Nociceptive innervation of the thoracolumbar fascia (TLF) has been investigated over the past few decades; however, these studies have not been compiled or collectively appraised. The purpose of this scoping review was to assess current knowledge regarding nociceptive innervation of the TLF to better inform future mechanistic and clinical TLF research targeting lower back pain (LBP) treatment. PubMed, ScienceDirect, Cochrane, and Embase databases were searched in January 2021 using relevant descriptors encompassing fascia and pain. Eligible studies satisfied the following: (a) published in English; (b) preclinical and clinical (in vivo and ex vivo) studies; (c) original data; (d) included quantification of at least one TLF nociceptive component. Two-phase screening procedures were conducted by a pair of independent reviewers, after which data were extracted and summarized from eligible studies. The search resulted in 257 articles of which 10 met the inclusion criteria. Studies showed histological evidence of nociceptive nerve fibers terminating in lower back fascia, suggesting a TLF contribution to LBP. Noxious chemical injection or electrical stimulation into fascia resulted in longer pain duration and higher pain intensities than injections into subcutaneous tissue or muscle. Pre-clinical and clinical research provides histological and functional evidence of nociceptive innervation of TLF. Additional knowledge of fascial neurological components could impact LBP treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509394PMC
http://dx.doi.org/10.3390/jcm10194342DOI Listing

Publication Analysis

Top Keywords

nociceptive innervation
12
thoracolumbar fascia
8
vivo vivo
8
vivo studies
8
innervation tlf
8
lbp treatment
8
eligible studies
8
evidence nociceptive
8
studies
6
tlf
6

Similar Publications

Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain.

View Article and Find Full Text PDF

Mast cells are regarded as effectors in immune defense against parasites and venoms and play an essential role in the pathology of allergic diseases. More recently, mast cells have been shown to receive stimuli derived from type 2 immunity, tissue damage, stress, and inflammation. Mast cells then rapidly convert these diverse signals into appropriate, organ-specific protective reflexes that can limit inflammation or reduce tissue damage.

View Article and Find Full Text PDF

Inflammation is associated with localized acidosis, however, attributing physiological and pathological roles to proton-sensitive receptors is challenging due to their diversity and widespread expression. Here, agonists of the proton-sensing GPCR, GPR65, were systematically characterized. The synthetic agonist BTB09089 (BTB) recapitulated many proton-induced signaling events and demonstrated selectivity for GPR65.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the spinal afferent innervation of the heart, focusing on how sensory information from the dorsal root ganglia (DRG) regulates cardiac functions.
  • Researchers injected a tracer into the DRGs of male rats to map the distribution and morphology of spinal afferent axons in the heart, finding significant projections into the left and right atria.
  • The findings highlight the presence and branching patterns of axons in different heart tissue layers, providing a foundational understanding for future research on cardiac spinal innervation and its implications in heart disease.
View Article and Find Full Text PDF

Activation of mouse skin mast cells and cutaneous afferent C-fiber subtypes by bee venom.

Neurosci Lett

January 2025

Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir, Baltimore, MD 21224, USA. Electronic address:

In mammals, many Hymenopteran stings are characterized by pain, redness, and swelling - three manifestations consistent with nociceptive nerve fiber activation. The effect of a Western honeybee (Apis mellifera) venom on the activation of sensory C-fibers in mouse skin was studied using an innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Our data show that honeybee venom stimulated mouse cutaneous nociceptive-like C-fibers, with an intensity (action potential discharge frequency) similar to that seen with a maximally-effective concentration of capsaicin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!