The temperature dependence of tensile characteristics and fracture toughness of the standardly heat-treated low-alloyed steel OCHN3MFA along with three additionally heat-treated grades was experimentally studied. In the temperature range of ⟨-196; 22⟩ °C, all the additional heat treatments transferred the standard steel from a high- to ultra-high strength levels even with improved tensile ductility characteristics. This could be explained by a reduction of the inclusion content, refinement of the martensitic blocks, ductile retained austenite content, and homogenization of the shape ratio of martensitic laths as revealed by metallographic, X-ray, and EBSD techniques. On the other hand, the values of the fracture toughness of all grades were found to be comparable in the whole temperature range as the cause of a high stress triaxiality in the pre-cracked Charpy V-notch samples. The values of the fracture toughness of the standard steel grade could be predicted well using the fracture model proposed by Pokluda et al. based on the tensile characteristics. Such a prediction failed in the case of additionally heat-treated grades due to the different temperature dependence of the fracture mechanisms occurring in the tensile and fracture-toughness tests. While the tensile samples fractured in a ductile-dimple mode at all temperatures, the fracture-toughness specimens exhibited a transition from the ductile to quasi-brittle fracture mode with decreasing temperature. This transition could be interpreted in terms of a transfer from the model proposed by Rice and Johnson to the model of Tvergaard and Hutchinson.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510034PMC
http://dx.doi.org/10.3390/ma14195875DOI Listing

Publication Analysis

Top Keywords

temperature dependence
12
heat-treated grades
12
fracture toughness
12
dependence fracture
8
tensile characteristics
8
additionally heat-treated
8
temperature range
8
standard steel
8
values fracture
8
model proposed
8

Similar Publications

Fish oil-loaded silver carp scale gelatin-stabilized emulsions with vitamins for the delivery of curcumin.

NPJ Sci Food

January 2025

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

The encapsulation of curcumin in the emulsions has attracted much attention in functional food development. Herein, the fish oil-loaded silver carp scale gelatin-stabilized emulsions with vitamins were explored for the delivery of curcumin. The curcumin encapsulation had no obvious effect on the formation, storage stability, lipid oxidation, and in vitro droplet digestion behaviors of the emulsions.

View Article and Find Full Text PDF

In this review we discuss the development of methodology for calculating the temperature dependence and thermodynamic activation parameters for chemical reactions in solution and in enzymes, from computer simulations. We outline how this is done by combining the empirical valence bond method with molecular dynamics free energy simulations. In favorable cases it turns out that such simulations can even capture temperature optima for the catalytic rate.

View Article and Find Full Text PDF

Temperature-driven CsgA-enhanced mutant enable distinct self-assembly.

Int J Biol Macromol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Functional coating materials have found extensive applications across various technological fields. However, the effectiveness of these coating depends critically on the choice of an appropriate medium. In this study, we developed an advanced "molecular glue", a CsgA variant known as CsgA-pro, which can serve as a versatile medium for biotherapy.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS), which are considered an international problem due to their persistence in the environment, need to be properly treated in the end. In the destruction method by incineration, basic data are required to quantify the destruction characteristics of the target substance and the temperature-dependent behavior of its by-products. In this study, we conducted incineration tests targeting perfluorooctanoic acid (PFOA) and perfluorooctadecanoic acid (PFOcDA).

View Article and Find Full Text PDF

Separation of deaminated impurities from the desired oligonucleotides using supercritical fluid chromatography.

J Chromatogr A

January 2025

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

With recent advancements concerning the optimization of the analytical conditions, it is feasible to analyze polar molecules using supercritical fluid chromatography (SFC). In this study, the applicability of SFC is evaluated for analyzing 5-, 10-, 15-, and 18-mer oligonucleotides, and SFC is then applied to analyze deaminated products, which are side products generated during oligonucleotide synthesis. These side products are difficult to separate from the target oligonucleotide, with the difficulty varying depending on the deamination position and sequences, even when using ion-pair reversed-phase liquid chromatography (IP-RPLC), a common method for oligonucleotide analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!