Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys.

Materials (Basel)

Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan.

Published: October 2021

The fine misfit precipitates in age-hardenable aluminum alloys have important roles due to their excellent age-hardening ability, by their interaction with dislocations. The present study focused on the internal stress field of plate-shaped misfitting precipitates to evaluate their roles in dislocation overcoming the precipitates by means of micromechanics based on Green's function method. The stress field of misfit precipitates on {001} and {111} habit planes were reproduced by homogeneous misfit strain (eigenstrain) of the precipitate (Eshelby inclusion method), and the dislocation motion vector on the primary slip plane was predicted by the force acted on the dislocation by the Peach-Koehler formula. According to simulation results, the dislocation interaction strongly depends on the stress field and geometry of misfit precipitates; repulsive and attractive forces are operated on the dislocations lying on the primary slip plane when the dislocation approaches the misfit precipitates. The hardening ability of different orientations of precipitation variants was discussed in terms of interaction force acted on the dislocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531999PMC
http://dx.doi.org/10.3390/ma14195811DOI Listing

Publication Analysis

Top Keywords

misfit precipitates
16
stress field
12
internal stress
8
dislocation interaction
8
plate-shaped misfitting
8
misfitting precipitates
8
aluminum alloys
8
primary slip
8
slip plane
8
force acted
8

Similar Publications

Microstructure and Phase Equilibria in BCC-B2 Nb-Ti-Ru Refractory Superalloys.

Materials (Basel)

November 2024

Department of Materials Science and Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA.

Refractory superalloys (RSAs) are promising candidates for high-temperature, high-strength applications. Two-phase RSAs containing body-centered cubic (BCC) and ordered B2 phases are among the more promising candidates. Systems containing Ru-based B2 precipitates exhibit stable two-phase microstructures at temperatures in excess of 1600 °C.

View Article and Find Full Text PDF

High-carbon hardline steels are primarily used for the manufacture of tire beads for both automobiles and aircraft, and vanadium (V) microalloying is an important means of adjusting the microstructure of high-carbon hardline steels. Using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), the microstructure and precipitation phases of continuous cooled high-carbon steels were characterized, and the vanadium content, carbon diffusion coefficient, and critical precipitation temperature were calculated. The results showed that as the V content increased to 0.

View Article and Find Full Text PDF

An atomic-scale approach was employed to simulate the formation of precipitates with different lattice misfits in the early stages of the aging of supersaturated aluminum alloys. The simulation results revealed that the increase in lattice misfits could significantly promote the nucleation rate of precipitates, which results in a larger number and smaller size of the precipitates. The morphologies of the precipitates also vary with the degree of a lattice misfit.

View Article and Find Full Text PDF

Clarifying the deformation behaviors of microstructures could greatly help us understand the precipitation-strengthening mechanism in alloys. However, it is still a formidable challenge to study the slow plastic deformation of alloys at the atomic scale. In this work, the phase-field crystal method was used to investigate the interactions between precipitates, grain boundary, and dislocation during the deformation processes at different degrees of lattice misfits and strain rates.

View Article and Find Full Text PDF

Nanocomposite films hold great promise for multifunctional devices by integrating different functionalities within a single film. The microstructure of the precipitate/secondary phase is an essential element in designing composites' properties. The interphase strain between the matrix and secondary phase is responsible for strain-mediated functionalities, such as magnetoelectric coupling and ferroelectricity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!