In the present study, 0.115 M L-arginine (LA) has been used as an eco-friendly inhibitor in simulated concrete pore solutions (SP-0) in order to form passive films on a steel rebar-solution interface until 144 h. Hence, 0.51 (SP-1) and 0.85 M NaCl (SP-2) were added in LA containing SP-0 solution to breakdown the passive film and to initiate corrosion reactions. The electrochemical results show that the charge transfer resistance () of steel rebar exposed to SP-1 and SP-2 solutions increased with respect to immersion periods. The sample exposed to the SP-2 solution initiated the corrosion reaction at the steel rebar-solution interface after 24 h of NaCl addition and formed pits; on the other hand, the sample without NaCl added, i.e., SP-0, showed agglomeration and dense morphology of corrosion products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510377 | PMC |
http://dx.doi.org/10.3390/ma14195693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!