AI Article Synopsis

  • Silicon nitride (SiNx) and hydrogenated silicon nitride (SiNx:H) thin films are valuable in various industries due to their excellent optical, mechanical, and thermal properties, making them suitable for applications like solar cells, semiconductors, and OLEDs.
  • The wide bandgap of SiNx (~5.2 eV) allows for optoelectronic applications, such as being used as passivation layers or barriers, while their high water impermeability enhances their potential in device coatings.
  • Various deposition methods, including CVD (plasma enhanced, hot wire, and electron cyclotron resonance), PVD (sputtering), and the emerging atomic layer deposition (ALD), significantly influence the properties of SiNx films,

Article Abstract

Silicon nitride (SiNx) and hydrogenated silicon nitride (SiNx:H) thin films enjoy widespread scientific interest across multiple application fields. Exceptional combination of optical, mechanical, and thermal properties allows for their utilization in several industries, from solar and semiconductor to coated glass production. The wide bandgap (~5.2 eV) of thin films allows for its optoelectronic application, while the SiNx layers could act as passivation antireflective layers or as a host matrix for silicon nano-inclusions (Si-ni) for solar cell devices. In addition, high water-impermeability of SiNx makes it a potential candidate for barrier layers of organic light emission diodes (OLEDs). This work presents a review of the state-of-the-art process techniques and applications of SiNx and SiNx:H thin films. We focus on the trends and latest achievements of various deposition processes of recent years. Historically, different kinds of chemical vapor deposition (CVD), such as plasma enhanced (PE-CVD) or hot wire (HW-CVD), as well as electron cyclotron resonance (ECR), are the most common deposition methods, while physical vapor deposition (PVD), which is primarily sputtering, is also widely used. Besides these fabrication methods, atomic layer deposition (ALD) is an emerging technology due to the fact that it is able to control the deposition at the atomic level and provide extremely thin SiNx layers. The application of these three deposition methods is compared, while special attention is paid to the effect of the fabrication method on the properties of SiNx thin films, particularly the optical, mechanical, and thermal properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510430PMC
http://dx.doi.org/10.3390/ma14195658DOI Listing

Publication Analysis

Top Keywords

thin films
20
silicon nitride
16
hydrogenated silicon
8
fabrication methods
8
sinxh thin
8
optical mechanical
8
mechanical thermal
8
thermal properties
8
sinx layers
8
vapor deposition
8

Similar Publications

Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer.

Nano Converg

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeolabuk-do, 56212, Republic of Korea.

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of AlO-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor.

View Article and Find Full Text PDF

Dark-Field Absorbance Circular Dichroism of Oriented Chiral Thin Films.

J Phys Chem Lett

January 2025

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Dark-field and confocal approaches to circular dichroism (CD) spectroscopy of uniaxial thin films examine the relationship between symmetry and incoherence in the nonreciprocal CD response, or the component that is antisymmetric about the light propagation direction. Modifying a conventional CD spectrometer for low-angle scattering detection isolates incoherent contributions to nonreciprocal CD of drop-cast thin films, boasting 5-to-10-fold enhancements in CD dissymmetry parameters. Conversely, confocal detection suppresses the nonreciprocal CD response.

View Article and Find Full Text PDF

An interesting approach of including an upconverter in the MoS counter electrode can yield broadband light harvesting Pt-free DSSC assembly. Here different upconverter (UC) nanoparticles (Yb, Er incorporated NaYF, YF, CeO & YO) were synthesized and loaded in MoS thin film by hydrothermal method. The inclusion of UCs in MoS films exposed without any secondary formation of upconverters and the uniform deposition of the films are confirmed through XRD and FESEM analysis respectively.

View Article and Find Full Text PDF

Next-generation real-time gas sensors are crucial for detecting multiple gases simultaneously with high sensitivity and selectivity. In this study, ternary metal sulfide (PbSnS)-incorporated metal oxide (SnO) heterostructures were synthesized via a one-step hydrothermal method. Characterizations such as X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the successful formation of PbSnS/SnO heterostructures.

View Article and Find Full Text PDF

Selective Undercut of Undoped Optical Membranes for Spin-Active Color Centers in 4H- Silicon Carbide.

ACS Nano

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!