Opportunities, Challenges and Prospects for Electrodeposition of Thin-Film Functional Layers in Solid Oxide Fuel Cell Technology.

Materials (Basel)

Laboratory of Solid Oxide Fuel Cells, Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia.

Published: September 2021

Electrolytic deposition (ELD) and electrophoretic deposition (EPD) are relevant methods for creating functional layers of solid oxide fuel cells (SOFCs). This review discusses challenges, new findings and prospects for the implementation of these methods, with the main emphasis placed on the use of the ELD method. Topical issues concerning the formation of highly active SOFC electrodes using ELD, namely, the electrochemical introduction of metal cations into a porous electrode backbone, the formation of composite electrodes, and the electrochemical synthesis of perovskite-like electrode materials are considered. The review presents examples of the ELD formation of the composite electrodes based on porous platinum and silver, which retain high catalytic activity when used in the low-temperature range (400-650 °C). The features of the ELD/EPD co-deposition in the creation of nanostructured electrode layers comprising metal cations, ceramic nanoparticles, and carbon nanotubes, and the use of EPD to create oriented structures are also discussed. A separate subsection is devoted to the electrodeposition of CeO-based film structures for barrier, protective and catalytic layers using cathodic and anodic ELD, as well as to the main research directions associated with the deposition of the SOFC electrolyte layers using the EPD method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509600PMC
http://dx.doi.org/10.3390/ma14195584DOI Listing

Publication Analysis

Top Keywords

functional layers
8
layers solid
8
solid oxide
8
oxide fuel
8
metal cations
8
formation composite
8
composite electrodes
8
layers
5
eld
5
opportunities challenges
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Butterfly pupal wing tissue with an eyespot organizer.

Cells Dev

January 2025

Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.

Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells.

View Article and Find Full Text PDF

Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe.

Talanta

December 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:

Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.

View Article and Find Full Text PDF

The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!