Nanograined nuclear materials are expected to have a better performance as spallation targets and nuclear fuels than conventional materials, but many basic properties of these materials are still unknown. The present work aims to contribute to their better understanding by studying the effect of grain size on the melting and solid-solid transitions of nanograined UC. We laser-heated 4 nm-10 nm grain size samples with UC as the main phase (but containing graphite and UO as impurities) under inert gas to temperatures above 3000 K, and their behavior was studied by thermal radiance spectroscopy. The UC solidification point (2713(30) K) and α-UC to β-UC solid-solid transition temperature (2038(10) K) were observed to remain unchanged when compared to bulk crystalline materials with micrometer grain sizes. After melting, the composite grain size persisted at the nanoscale, from around 10 nm to 20 nm, pointing to an effective role of carbon in preventing the rapid diffusion of uranium and grain growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509787 | PMC |
http://dx.doi.org/10.3390/ma14195568 | DOI Listing |
Mol Breed
January 2025
Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China.
Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.
The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.
View Article and Find Full Text PDFDiscov Nano
January 2025
Physics Department/Faculty of Science, Sana'a University, Sana'a, Yemen.
The study highlights the significant effects of Zn ions concentration on the optical properties of BaNiZnFeO ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNiZnFeO, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV-Vis) spectroscopy.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong; ZeBlast Technology Limited, Hong Kong Science Park;
Intravenous (IV) injection is widely recognized as the most effective and commonly utilized method for achieving systemic delivery of substances in mammalian research models. However, its application in adult zebrafish for drug delivery, stem cell transplantation, and regenerative and cancer studies has been limited due to the challenges posed by their small body size and intricate blood vessels. To overcome these limitations, alternative injection techniques such as intracardiac and retro-orbital (RO) injection have been explored in the past for stem cell transplantation in adult zebrafish.
View Article and Find Full Text PDFChemSusChem
January 2025
Zhejiang Normal University, 688 Yingbin road, Jinhua, CHINA.
The efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been lagging behind the Shockley-Queisser limit primarily due to the presence of deep-level defects. These deep-level defects cause critical issues such as short carrier diffusion length, significant band tailing, and a large open-circuit voltage (VOC) deficit, ultimately leading to low device efficiency. To address these issues, we propose a post-fabrication defect healing strategy by dip-coating the CZTSSe film in dimethylformamide (DMF) solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!