Producing bulk AlN with grain sizes in the nano regime and measuring its thermal conductivity is an important milestone in the development of materials for high energy optical applications. We present the synthesis and subsequent densification of nano-AlN powder to produce bulk nanocrystalline AlN. The nanopowder is synthesized by converting transition alumina (δ-AlO) with <40 nm grain size to AlN using a carbon free reduction/nitridation process. We consolidated the nano-AlN powder using current activated pressure assisted densification (CAPAD) and achieved a relative density of 98% at 1300 °C with average grain size, d¯~125 nm. By contrast, high quality commercially available AlN powder yields densities ~75% under the same CAPAD conditions. We used the 3-ω method to measure the thermal conductivity, of two nanocrystalline samples, 91% dense, d¯ = 110 nm and 99% dense, d¯ = 220 nm, respectively. The dense sample with 220 nm grains has a measured = 43 W/(m·K) at room temperature, which is relatively high for a nanocrystalline ceramic, but still low compared to single crystal and large grain sized polycrystalline AlN which can exceed 300 W/(m·K). The reduction in in both samples is understood as a combination of grain boundary scattering and porosity effects. We believe that these are finest d¯ reported in bulk dense AlN and is the first report of thermal conductivity for AlN with ≤220 nm grain size. The obtained values are higher than the vast majority of conventional optical materials, demonstrating the advantage of AlN for high-energy optical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509186 | PMC |
http://dx.doi.org/10.3390/ma14195565 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Land, Environment, Agriculture and Forestry, University of Padua, Viale dell'Università 16, 35020 Padua, Italy.
Tannin-based foams have gained attention as a potential bio-based alternative to conventional synthetic foams. Traditionally, namely condensed tannins (CT) have been used, leaving the potential of hydrolysable tannins (HT) largely unexplored. This study compared the performance of chestnut (HT) and quebracho (CT) in tannin-protein-based foams at different tannin ratios.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.
Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!