A Novel Cre/-Based Genetic Tool for Repeated, Targeted and Markerless Gene Integration in .

Int J Mol Sci

Key Laboratory of Molecular Biophysics, The Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: October 2021

The unconventional yeast is extensively applied in bioproduction fields owing to its excellent metabolite and protein production ability. Nonetheless, utilization of this promising host is still restricted by the limited availability of precise and effective gene integration tools. In this study, a novel and efficient genetic tool was developed for targeted, repeated, and markerless gene integration based on Cre/ site-specific recombination system. The developed tool required only a single selection marker and could completely excise the unnecessary sequences. A total of three plasmids were created and seven rounds of marker-free gene integration were examined in . All the integration efficiencies remained above 90%, and analysis of the protein production and growth characteristics of the engineered strains confirmed that genome modification via the novel genetic tool was feasible. Further work also confirmed that the genetic tool was effective for the integration of other genes, loci, and strains. Thus, this study significantly promotes the application of the Cre/ system and presents a powerful tool for genome engineering in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509416PMC
http://dx.doi.org/10.3390/ijms221910739DOI Listing

Publication Analysis

Top Keywords

genetic tool
16
gene integration
16
markerless gene
8
protein production
8
tool
6
integration
6
novel cre/-based
4
genetic
4
cre/-based genetic
4
tool repeated
4

Similar Publications

Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.

Hum Gene Ther

January 2025

Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.

View Article and Find Full Text PDF

The genus in the North Atlantic comprises of long lived deep-waters species that have been extensively fished upon, and many stocks are severely depleted across the Atlantic. This is particularly evident for the species . In recent papers, cryptic species have been indicated within this genus and molecular markers are therefore needed to provide identification for the species, including the cryptic species as a basis for advice regarding management and rebuilding of the stocks.

View Article and Find Full Text PDF

Bridging health registry data acquisition and real-time data analytics.

Front Med (Lausanne)

December 2024

Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.

The number of clinical studies and associated research has increased significantly in the last few years. Particularly in rare diseases, an increased effort has been made to integrate, analyse, and develop new knowledge to improve patient stratification and wellbeing. Clinical databases, including digital medical records, hold significant amount of information that can help understand the impact and progression of diseases.

View Article and Find Full Text PDF

LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats.

Brief Bioinform

November 2024

Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China.

Identifying the regulatory effects of noncoding variants presents a significant challenge. Recently, the accumulation of epigenomic profiling data in wheat has provided an opportunity to model the functional impacts of these variants. In this study, we introduce Language of Genome for Wheat (LOGOWheat), a deep learning-based tool designed to predict the regulatory effects of noncoding variants in wheat.

View Article and Find Full Text PDF

Pharmacogenetic testing can prevent severe toxicities from several oncology drug therapies; it also has the potential to improve the outcomes from supportive care drugs. Paired tumor and germline sequencing is increasingly common in oncology practice; these include sequencing of pharmacogenes, but the germline pharmacogenetic variants are rarely included in the clinical reports, despite many being clinically actionable. We established an informatics workflow to evaluate the clinical sequencing results for pharmacogenetic variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!