A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bisphenol A Removal by the Fungus IM 6482-Analysis of the Cellular and Subcellular Level. | LitMetric

Bisphenol A Removal by the Fungus IM 6482-Analysis of the Cellular and Subcellular Level.

Int J Mol Sci

Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland.

Published: October 2021

Bisphenol (BPA) is a key ingredient in the production of epoxy resins and some types of plastics, which can be released into the environment and alter the endocrine systems of wildlife and humans. In this study, the ability of the fungus IM 6482 to BPA elimination was investigated. LC-MS/MS analysis showed almost complete removal of BPA from the growth medium within 72 h of culturing. Products of BPA biotransformation were identified, and their estrogenic activity was found to be lower than that of the parent compound. Extracellular laccase activity was identified as the main mechanism of BPA elimination. It was observed that BPA induced oxidative stress in fungal cells manifested as the enhancement in ROS production, membranes permeability and lipids peroxidation. These oxidative stress markers were reduced after BPA biodegradation (72 h of culturing). Intracellular proteome analyses performed using 2-D electrophoresis and MALDI-TOF/TOF technique allowed identifying 69 proteins in a sample obtained from the BPA containing culture. There were mainly structural and regulator proteins but also oxidoreductive and antioxidative agents, such as superoxide dismutase and catalase. The obtained results broaden the knowledge on BPA elimination by microscopic fungi and may contribute to the development of BPA biodegradation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509184PMC
http://dx.doi.org/10.3390/ijms221910676DOI Listing

Publication Analysis

Top Keywords

bpa elimination
12
bpa
10
oxidative stress
8
bpa biodegradation
8
bisphenol removal
4
removal fungus
4
fungus 6482-analysis
4
6482-analysis cellular
4
cellular subcellular
4
subcellular level
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!