Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508678 | PMC |
http://dx.doi.org/10.3390/ijms221910649 | DOI Listing |
Sci Rep
January 2025
Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P × receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.
Circulation
January 2025
Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute; and Emory University School of Medicine, Atlanta, GA (L.S.S.).
There is a new awareness of the widespread nature of metabolic dysfunction-associated steatotic liver disease (MASLD) and its connection to cardiovascular disease (CVD). This has catalyzed collaboration between cardiologists, hepatologists, endocrinologists, and the wider multidisciplinary team to address the need for earlier identification of those with MASLD who are at increased risk for CVD. The overlap in the pathophysiologic processes and parallel prevalence of CVD, metabolic syndrome, and MASLD highlight the multisystem consequences of poor cardiovascular-liver-metabolic health.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland. Electronic address:
Retinoic acid (RA) is a small, lipophilic molecule that inhibits cell proliferation and induces differentiation through activation of a family of nuclear receptors (RARs). The therapeutic potential of RA in the treatment of glioma was first evaluated two decades ago, but these attempts were considered not conclusive. Based on the complexity of tumor microenvironment and the role of purinergic signals within TME, we aimed to support RA-induced alterations in glioma cells with extracellular ATP.
View Article and Find Full Text PDFPurinergic Signal
November 2024
Department of Gastroenterology and Scientific Research Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
The P2X7 receptor, an ATP-gated ion channel which belongs to the P2X receptor family, plays critical roles in recognizing extracellular adenosine 5'-triphosphate (ATP) and is widely expressed in most tumor cells as well as inflammatory cells. Previously, the P2X7 receptor has been demonstrated to modulate the progression of various malignancies, including glioblastoma, pancreatic cancer, lung cancer, leukemia, and lymphoma. However, the biological function and prognostic values of P2X7 receptor in hepatocellular carcinoma remain to be determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!