Liposome size and in vitro release of the active substance belong to critical quality attributes of liposomal carriers. Here, we apply asymmetric flow field-flow fractionation (AF4) to characterize theranostic liposomes prepared by thin lipid film hydration/extrusion or microfluidics. The vesicles' size was derived from multi-angle laser light scattering following fractionation (AF4) and compared to sizes derived from dynamic light scattering measurements. Additionally, we adapted a previously developed AF4 method to study zinc phthalocyanine (ZnPc) release/transfer from theranostic liposomes. To this end, theranostic liposomes were incubated with large acceptor liposomes serving as a sink (mimicking biological sinks) and were subsequently separated by AF4. During incubation, ZnPc was transferred from donor to acceptor fraction until reaching equilibrium. The process followed first-order kinetics with half-lives between 119.5-277.3 min, depending on the formulation. The release mechanism was postulated to represent a combination of Fickian diffusion and liposome relaxation. The rate constant of the transfer was proportional to the liposome size and inversely proportional to the ZnPc/POPC molar ratio. Our results confirm the usefulness of AF4 based method to study in vitro release/transfer of lipophilic payload, which may be useful to estimate the unwanted loss of drug from the liposomal carrier in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508677 | PMC |
http://dx.doi.org/10.3390/ijms221910456 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!