Obesity is a risk factor for metabolic diseases including type 2 diabetes, nonalcoholic steatohepatitis (NASH), heart diseases, and cancer. This study aimed to investigate the anti-obesity effect of Polygalin C (PC) isolated from Houtt. in 3T3-L1 adipocytes. Based on Oil Red O assay results, PC significantly decreased lipid accumulation compared to the control. We found that PC suppressed adipogenesis transcription factors including peroxisome proliferator-activated receptor γ (PPAR γ) and CCAAT/enhancer-binding protein (C/EBP) α, and lipogenic factors such as sterol regulatory element-binding protein 1c (SREBP 1c) and fatty acid synthase (FAS), in 3T3-L1 adipocytes using Western blotting and real-time polymerase chain reaction (PCR). Moreover, PC inhibited the differentiation of 3T3-L1 cells by regulating the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) and mitogen-activated protein kinase/protein kinase B (MAPK/Akt) signaling pathways. Additionally, we confirmed that PC inhibited early adipogenesis factors C/EBP β and C/EBP δ. Therefore, PC inhibited adipogenesis and lipogenesis in vitro. Thus, PC appears to exert potential therapeutic effects on obesity by suppressing lipid metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508696PMC
http://dx.doi.org/10.3390/ijms221910405DOI Listing

Publication Analysis

Top Keywords

3t3-l1 adipocytes
12
anti-obesity polygalin
8
polygalin isolated
8
isolated houtt
8
lipogenic factors
8
houtt suppression
4
suppression adipogenic
4
adipogenic lipogenic
4
factors
4
3t3-l1
4

Similar Publications

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Chlorinated paraffins (CPs) are environmental pollutants extensively used in industries. While the use of short-chain chlorinated paraffins (SCCPs) has been restricted since 2017, the use of medium-chain chlorinated paraffins (MCCPs) has risen as their replacement. Due to lipophilic character, it can be expected that CPs enter the cells; however, the in vitro accumulation potential of CPs remains poorly understood.

View Article and Find Full Text PDF

Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.

Plant Foods Hum Nutr

January 2025

Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.

Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity.

View Article and Find Full Text PDF

Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!