Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic malignancies arising from the bone marrow. Despite recent advances in treating these diseases, patients with higher-risk MDS and AML continue to have a poor prognosis with limited survival. It has long been recognized that there is an immune component to the pathogenesis of MDS and AML, but until recently, immune therapies have played a limited role in treating these diseases. Immune suppressive therapy exhibits durable clinical responses in selected patients with MDS, but the question of which patients are most suitable for this treatment remains unclear. Over the past decade, there has been remarkable progress in identifying genomic features of MDS and AML, which has led to an improved discernment of the molecular pathogenesis of these diseases. An improved understanding of immune and inflammatory molecular mechanisms of MDS and AML have also recently revealed novel therapeutic targets. Emerging treatments for MDS and AML include monoclonal antibodies such as immune checkpoint inhibitors, bispecific T-cell-engaging antibodies, antibody drug conjugates, vaccine therapies, and cellular therapeutics including chimeric antigen receptor T-cells and NK cells. In this review, we provide an overview of the current understanding of immune dysregulation in MDS and AML and an update on novel immune therapies for these bone marrow malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507987 | PMC |
http://dx.doi.org/10.3390/cancers13195026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!