In medulloblastomas, genetic alterations resulting in over-activation and/or deregulation of proteins involved in Hedgehog (HH) signaling lead to cellular transformation, which can be prevented by inhibition of primary ciliogenesis. Here, we investigated the role of MAPK15 in HH signaling and, in turn, in HH-mediated cellular transformation. We first demonstrated, in NIH3T3 mouse fibroblasts, the ability of this kinase of controlling primary ciliogenesis and canonical HH signaling. Next, we took advantage of transformed human medulloblastoma cells belonging to the SHH-driven subtype, i.e., DAOY and ONS-76 cells, to ascertain the role for MAPK15 in HH-mediated cellular transformation. Specifically, medullo-spheres derived from these cells, an established in vitro model for evaluating progression and malignancy of putative tumor-initiating medulloblastoma cells, were used to demonstrate that MAPK15 regulates self-renewal of these cancer stem cell-like cells. Interestingly, by using the HH-related oncogenes SMO-M2 and GLI2-DN, we provided evidences that disruption of MAPK15 signaling inhibits oncogenic HH overactivation in a specific cilia-dependent fashion. Ultimately, we show that pharmacological inhibition of MAPK15 prevents cell proliferation of SHH-driven medulloblastoma cells, overall suggesting that oncogenic HH signaling can be counteracted by targeting the ciliary gene MAPK15, which could therefore be considered a promising target for innovative "smart" therapies in medulloblastomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508543 | PMC |
http://dx.doi.org/10.3390/cancers13194903 | DOI Listing |
Neuro Oncol
December 2024
Genetics Department, Institut Curie, Paris, France.
Background: Medulloblastoma (MB) is one of the most prevalent embryonal malignant brain tumors. Current classification organizes these tumors into four molecular subgroups (WNT, SHH, Group 3, and Group 4 MB). Recently, a comprehensive classification has been established, identifying numerous subtypes, some of which exhibit a poor prognosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.
View Article and Find Full Text PDFGenome Biol
December 2024
Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Single-cell DNA sequencing (scDNA-seq) enables decoding somatic cancer variation. Existing methods are hampered by low throughput or cannot be combined with transcriptome sequencing in the same cell. We propose HIPSD&R-seq (HIgh-throughPut Single-cell Dna and Rna-seq), a scalable yet simple and accessible assay to profile low-coverage DNA and RNA in thousands of cells in parallel.
View Article and Find Full Text PDFNeurooncol Adv
October 2024
Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
Background: Medulloblastoma (MB) is the most common high-grade pediatric brain tumor, comprised of 4 main molecular subgroups-sonic-hedgehog (SHH), Wnt, Group 3, and Group 4. Group 3 and Group 4 tumors are the least characterized MB subgroups, despite Group 3 having the worst prognosis (~50% survival rate), and Group 4 being the most prevalent. Such poor characterization can be attributed to high levels of inter- and intratumoral heterogeneity, making it difficult to identify common therapeutic targets.
View Article and Find Full Text PDFMol Imaging Biol
December 2024
Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
Purpose: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.
Procedures: Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!