Therapeutic Potential of Innate Lymphoid Cells for Multiple Myeloma Therapy.

Cancers (Basel)

Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland.

Published: September 2021

Innate lymphoid cells (ILCs) are a recently identified family of lymphocyte-like cells lacking a specific antigen receptor. They are part of the innate immune system. They play a key role in tissue homeostasis and also control inflammatory and neoplastic processes. In response to environmental stimuli, ILCs change their phenotype and functions, and influence the activity of other cells in the microenvironment. ILC dysfunction can lead to a wide variety of diseases, including cancer. ILC can be divided into three subgroups: ILC Group 1, comprising NK cells and ILC1; Group 2, including ILC2 alone; and Group 3, containing Lymphoid Tissue inducers (LTi) and ILC3 cells. While Group 1 ILCs mainly exert antitumour activity, Group 2 and Group 3 ILCs are protumorigenic in nature. A growing body of preclinical and clinical data support the role of ILCs in the pathogenesis of multiple myeloma (MM). Therefore, targeting ILCs may be of clinical benefit. In this manuscript, we review the available data on the role of ILCs in MM immunology and therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507621PMC
http://dx.doi.org/10.3390/cancers13194806DOI Listing

Publication Analysis

Top Keywords

innate lymphoid
8
lymphoid cells
8
multiple myeloma
8
group ilcs
8
role ilcs
8
ilcs
7
cells
6
group
6
therapeutic potential
4
potential innate
4

Similar Publications

Tissue-resident immune cells: from defining characteristics to roles in diseases.

Signal Transduct Target Ther

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction.

View Article and Find Full Text PDF

The immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!