As immunotherapies targeting the PDL1 checkpoint have become a mainstay of treatment for a subset of head and neck squamous cell carcinoma (HNSCC) patients, a detailed understanding of the mechanisms underlying PDL1-mediated immune evasion is needed. To elucidate factors regulating expression of PDL1 in HNSCC cells, a genome-wide CRISPR profiling approach was implemented to identify genes and pathways conferring altered PDL1 expression in an HNSCC cell line model. Our screen nominated several candidate PDL1 drivers, including Toll-like Receptor 2 (TLR2). Depletion of TLR2 blocks interferon-γ-induced PDL1 expression, and stimulation of TLR2 with either or a bacterial lipopeptide mimetic, Pam3CSK4, enhanced PDL1 expression in multiple models. The data herein demonstrate a role for TLR2 in modulating the expression of PDL1 in HNSCC models and suggest that microbiota may directly modulate immunosuppression in cancer cells. Our study represents a step toward disentangling the diverse pathways and stimuli regulating PDL1 expression in HNSCC and underscores a need for future work to characterize the complex microbiome in HNSCC patients treated with immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508280 | PMC |
http://dx.doi.org/10.3390/cancers13194782 | DOI Listing |
Cells
December 2024
BIH Center for Regenerative Therapies (BCRT), Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions.
View Article and Find Full Text PDFOncol Rep
March 2025
Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.
View Article and Find Full Text PDFVet Comp Oncol
January 2025
Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy.
Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.
View Article and Find Full Text PDFCombined immune checkpoint blockade (ICB) and chemoradiation (CRT) is approved in patients with locally advanced cervical cancer (LACC) but optimal sequencing of CRT and ICB is unknown. NRG-GY017 (NCT03738228) was a randomized phase I trial of atezolizumab (anti-PD-L1) neoadjuvant and concurrent with CRT (Arm A) vs. concurrent with CRT (Arm B) in patients with high-risk node-positive LACC.
View Article and Find Full Text PDFMethods
January 2025
Department of Geriatrics, Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China. Electronic address:
The EZH2 expression shows significantly associated with immunotherapeutic resistance in several tumors. A comprehensive analysis of the predictive values of EZH2 for immune checkpoint blockade (ICB) effectiveness in uveal melanoma (UM) remains unclear. We analyzed UM data from The Cancer Genome Atlas (TCGA) database, identified 888 differentially expressed genes (DEGs) associated with EZH2 expression, then conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses to elucidate biological features of EZH2 in UM assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!