A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of high-quality reflectors for vertical III-V nanowire lasers on Si. | LitMetric

Design of high-quality reflectors for vertical III-V nanowire lasers on Si.

Nanotechnology

Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom.

Published: October 2021

Nanowires (NWs) with a unique one-dimensional structure can monolithically integrate high-quality III-V semiconductors onto Si platform, which is highly promising to build lasers for Si photonics. However, the lasing from vertically-standing NWs on silicon is much more difficult to achieve compared with NWs broken off from substrates, causing significant challenges in the integration. Here, the challenge of achieving vertically-standing NW lasers is systematically analysed with III-V materials, e.g. GaAs(P) and InAs(P). The poor optical reflectivity at the NW/Si interface results severe optical field leakage to the substrate, and the commonly used SiOor SiNdielectric mask at the interface can only improve it to ∼10%, which is the major obstacle for achieving low-threshold lasing. A NW super lattice distributed Bragg reflector is therefore proposed, which is able to greatly improve the reflectivity to >97%. This study provides a highly-feasible method to greatly improve the performance of vertically-standing NW lasers, which can boost the rapid development of Si photonics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac2f22DOI Listing

Publication Analysis

Top Keywords

vertically-standing lasers
8
greatly improve
8
design high-quality
4
high-quality reflectors
4
reflectors vertical
4
vertical iii-v
4
iii-v nanowire
4
lasers
4
nanowire lasers
4
lasers nanowires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!