Photo-polymerization kinetics of a dental resin at a high temporal resolution.

J Mech Behav Biomed Mater

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada. Electronic address:

Published: December 2021

AI Article Synopsis

  • The study aims to measure the intrinsic rate of degree of conversion (DC) in dental resin-based composites at different light irradiances, identify the maximum transition time, and compare these findings with shrinkage strain.
  • Using a specific type of light-curing unit, researchers tested samples at irradiance levels of 890 mW/cm and 209 mW/cm, measuring DC in real-time and analyzing data through a phenomenological model.
  • Results showed that the transition times differed significantly between the two irradiance levels, with associated maximum linear strain rates, highlighting potential challenges for monitoring fast photo-polymerization kinetics above 1000 mW/cm.

Article Abstract

Objectives: This study: 1) aims to measure with high temporal resolution the intrinsic rate of the degree of conversion (DC) of a dental resin-based composite (RBC) photo-cured at two irradiances; 2) aims to determine the transition time at which the DC rate is maximum; 3) used two different irradiances to measure the shift in transition time; 4) aims to compare transition times measured using DC and shrinkage strain.

Methods: Samples (n = 20) 1 mm thick by 10 mm diameter of Filtek One bulk-fill restorative A2 shade (3M Oral Care) were photocured for 20 s with a single emission peak (wavelength centered at 455 nm) light-emitting-diode-based light-curing unit at irradiance levels of 890 mW/cm and 209 mW/cm, and initial sample temperature of T = 23 °C. The DC was measured in real-time using Attenuated Total Reflection (ATR) FTIR spectroscopy with a sampling rate of 13 DC data points per second. The data were analyzed within a phenomenological autocatalytic model. In addition, the axial shrinkage strain was measured using 3 samples of the RBC with the same outer dimensions and under similar experimental conditions using the bonded disk method and an interferometric technique.

Results: For the 890 mW/cm and 209 mW/cm irradiance levels, the DC with time was found to agree with the model enabling the determination of transition times of 0.66 ± 0.05 s and 2.3 ± 0.2 s, and the DC at these times of 5.5 ± 0.2% and 6.4 ± 0.2%. The maximum linear strain rate at 0.76 ± 0.01 s and 1.98 ± 0.02 s for the 890 mW/cm and 209 mW/cm irradiance levels, respectively, are within two standard deviations of the corresponding transition times.

Significance: At an irradiance level much greater than 1000 mW/cm, the photo-polymerization kinetics of a dental RBC may be too fast to be measured accurately using ATR-FTIR spectroscopy. A viable alternative to monitor the kinetics is through the measurements of the axial shrinkage strain employing the bonded disk method and an interferometric technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104884DOI Listing

Publication Analysis

Top Keywords

irradiance levels
12
890 mw/cm 209 mw/cm
12
photo-polymerization kinetics
8
kinetics dental
8
high temporal
8
temporal resolution
8
transition time
8
transition times
8
axial shrinkage
8
shrinkage strain
8

Similar Publications

Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.

View Article and Find Full Text PDF

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Radiation therapy is one of the most effective treatments for approximately 60% of patients with cancer. During radiation exposure, the overproduction of reactive oxygen species (ROS) disrupts the lipid layer of the membrane, leading to subsequent peroxide radical formation. Cimetidine (Cim) and famotidine (Fam) are histamine H2 receptor antagonists (H2 blocker), also known as peptic ulcer drugs, that exert radioprotective effects.

View Article and Find Full Text PDF

Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography.

Phys Imaging Radiat Oncol

October 2024

Université Paris-Saclay, Gustave Roussy, Inserm, Molecular Radiotherapy and Therapeutic Innovation, U1030, 94800 Villejuif, France.

Background And Purpose: Deep-learning-based automatic segmentation is widely used in radiation oncology to delineate organs-at-risk. Dual-energy CT (DECT) allows the reconstruction of enhanced contrast images that could help with manual and auto-delineation. This paper presents a performance evaluation of a commercial auto-segmentation software on image series generated by a DECT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!