TEC kinase stabilizes PLK4 to promote liver cancer metastasis.

Cancer Lett

School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Liver Research (The University of Hong Kong), The University of Hong Kong, Pokfulam, Hong Kong, China. Electronic address:

Published: January 2022

Aberrated PLK4 expression has been reported in different malignancies and causes centrosome amplification, aneuploidy, and genomic instability. However, the mechanism by which PLK4 is regulated in carcinogenesis remains not fully characterised. Here, we showed that PLK4 was overexpressed in human HCC and overexpression of PLK4 predicted poorer patient prognosis. Unexpectedly, we found that induced expression of PLK4 promotes, but knockdown of PLK4 inhibits, HCC cell migration and invasion. Mechanistically, we found that TEC tyrosine kinase, which also promotes HCC cell migration, stabilizes PLK4 by phosphorylation. TEC directly phosphorylates PLK4 at tyrosine 86 residue, which not only stabilizes the protein but also enhances PLK4-mediated HCC cell invasion. Further investigation by transcriptome sequencing indicated that PLK4 promotes the phosphorylation of focal adhesion kinase to regulate the focal adhesion pathway in HCC cell migration. Taken together, our results demonstrated that PLK4 plays an important role in HCC metastasis and revealed for the first time the mechanism by which PLK4 promotes HCC metastasis via TEC phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2021.08.038DOI Listing

Publication Analysis

Top Keywords

hcc cell
16
plk4
12
plk4 promotes
12
cell migration
12
stabilizes plk4
8
mechanism plk4
8
promotes hcc
8
focal adhesion
8
hcc metastasis
8
hcc
7

Similar Publications

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Radiofrequency ablation combined with immunotherapy to treat hepatocellular carcinoma: a comprehensive review.

BMC Surg

January 2025

General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

Background And Aim: Hepatocellular carcinoma (HCC) is a highly immunogenic tumor and the third leading cause of cancer-related deaths worldwide with an increasing incidence. Therefore, the combination of immunotherapy with other approaches, such as anti-angiogenic agents and local area therapy, has become a new strategy for HCC treatment.

Methods: We searched PubMed and Web of Science and extracted publications relating to the radiofrequency ablation (RFA) and immunotherapy.

View Article and Find Full Text PDF

Programmed cell death (PCD) is a significant factor in the progression of hepatocellular carcinoma (HCC) and might serve as a crucial marker for predicting HCC prognosis and therapy response. However, the classification of HCC based on diverse PCD patterns requires further investigation. This study identified a novel molecular classification named PCD subtype (C1, C2, and C3) based on the genes associated with 19 PCD patterns, distinguished by clinical, biological functional pathways, mutations, immune characteristics, and drug sensitivity.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.

View Article and Find Full Text PDF

TRIM29 reverses lenvatinib resistance in liver cancer cells by ubiquitinating and degrading YBX1 to inhibit the PI3K/AKT pathway.

Transl Oncol

January 2025

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China. Electronic address:

Sorafenib and lenvatinib are frontline treatments for advanced hepatocellular carcinoma (HCC). While lenvatinib surpasses sorafenib in efficacy and tolerability, resistance remains a significant clinical challenge. Recent research highlights the potential of TRIM family proteins in modulating lenvatinib resistance in HCC, necessitating a deeper understanding of their specific mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!