In the last two decades, the utilization of magnetic nanospheres in intelligent polymeric structures have received increased attention of researchers in numerous biomedical applications. Here, hybrid nanostructured triple-responsive magnetic nanospheres (κ-Car-g-P(AA/DMA)@FeO) containing inorganic iron oxide core (FeO) and organic graft copolymeric shell based on κ-carrageenan (κ-Car) and poly(acrylic acid/dimethylaminoethyl methacrylate) (P(AA/DMA)) were synthesized by microwave induced co-precipitation technique. The structure, size, surface morphology, magnetic property and stability of synthesized κ-Car-g-P(AA/DMA)@FeO magnetic nanospheres were characterized using FTIR, UV, XRD, TEM, Zeta-sizer, and VSM. κ-Car-g-P(AA/DMA)@FeO nanospheres were loaded with 5-Fluorouracil (5-FU) as an antineoplastic drug, and their 5-FU release behavior was explored in diverse graft yields, pH values, temperatures and in the existence of an alternating magnetic field. The κ-Car-g-P(AA/DMA)@FeO nanospheres demonstrated pH-, thermo-, and magnetic field-responsive 5-FU release with good biocompatibility and excellent anticancer activity. In addition, 5-FU release under 50 mT magnetic field reached to 100% within 4 h. This work exhibits that hybrid nanospheres have a triple stimuli-responsive influence, which is of principal importance for the future design and application of multi-functional responsive platforms to develop externally stimulated release of active agents and their healthcare capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!