Effects of heavy metals on microorganisms and enzymes in soils of lead-zinc tailing ponds.

Environ Res

College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China; Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi province, 723001, Hanzhong, China; Shaanxi Province Key Laboratory of Catalytic Foundation and Application, 723001 Hanzhong, China.

Published: May 2022

Taking the soil around the lead-zinc tailings pound in the upper reaches of the Hanjiang River in Shaanxi Province as the research object, with tailings pond as the center, seven different belt zones were divided outwards, the contents of Pb, Cu, Zn, V, Ni, Cd in soil were analyzed, as well as soil basic respiration (SBR), microbial biomass carbon (MBC), microbial metabolic quotient (MMQ), and the activities of catalase, urease, cellulase, invertase and neutral phosphatase were also determined. The purpose was to reveal the intrinsic relationship between soil microbial, enzyme activities and heavy metal pollution, and to establish the characterization system of enzyme activities, soil heavy metal pollution degree, as well as microbial parameters. The results showed that: (1) The potential ecological risk index of six heavy metals was ranked as Cd > Cu > Pb > Ni > Zn > V. Cd was a high potential ecological risk, Cu was a medium potential ecological risk, and Zn, Pb, V and Ni were low potential ecological risk. The comprehensive evaluation result of Hakanson's potential ecological hazard index showed that, Zone I was of high potential risk level, Zone II, III and IV were of medium risk level, and Zone V, VI and VII were of low level. (2) Microbial biomass carbon (MBC) had a significant negative correlation or extremely significant negative correlation with 6 heavy metals, and microbial metabolic quotient (MMQ) had a significant positive correlation or extremely significant positive correlation with 6 heavy metals. MBC and MMQ were effective microbiological indexes to measure the quality status of soil, while SBR was not. (3) Catalase, cellulase, sucrase and neutral phosphatase activity had significant negative correlation with the contents of 6 heavy metals, and they could replicate the pollution degree of substantial metals in the soil. However, urease had no significant correlation with the contents of 6 heavy metals, which could not reflect the pollution degree of soil heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.112174DOI Listing

Publication Analysis

Top Keywords

heavy metals
28
potential ecological
20
ecological risk
16
pollution degree
12
negative correlation
12
metals
8
soil
8
microbial biomass
8
biomass carbon
8
carbon mbc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!