AI Article Synopsis

  • The study introduces a method to observe individual protein conformations in live cells using a "binder/tag" approach, which relies on a peptide that interacts with a reporter protein only when the protein's conformation allows for exposure.
  • This method enables researchers to track the movement and conformation of proteins through fluorescence, using engineered biosensors for precise monitoring.
  • The findings report that activated Src proteins form slowly moving clusters within the cell, and the research highlights the potential for this technique to be applied to various proteins in biological studies.

Article Abstract

We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556369PMC
http://dx.doi.org/10.1016/j.cell.2021.09.026DOI Listing

Publication Analysis

Top Keywords

conformation individual
8
individual proteins
8
protein conformation
8
protein
5
biosensors based
4
based peptide
4
peptide exposure
4
exposure single
4
single molecule
4
molecule conformations
4

Similar Publications

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Background: TRIM28 plays a crucial role in maintaining genomic stability and establishing imprinting, facilitated by the diversity of KRAB zinc finger proteins. The SUMOylation of TRIM28 is essential for its function and is enhanced in the presence of the KRAB domain. Previously, we demonstrated that Kaiso, another factor capable of interacting with TRIM28, can promote its SUMOylation.

View Article and Find Full Text PDF

TFinder: A Python Web Tool for Predicting Transcription Factor Binding Sites.

J Mol Biol

February 2025

University Côte d'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, "Laboratory of Excellence (LABEX) Distalz", Valbonne, France. Electronic address:

Transcription is a key cell process that consists of synthesizing several copies of RNA from a gene DNA sequence. This process is highly regulated and closely linked to the ability of transcription factors to bind specifically to DNA. TFinder is an easy-to-use Python web portal allowing the identification of Individual Motifs (IM) such as Transcription Factor Binding Sites (TFBS).

View Article and Find Full Text PDF

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!