This paper reports the self-assembly of the fibrillar network in a concentrated solution of macromolecules with an amphiphilic structure of repeating units. The investigation of amphiphilic homopolymers and alternating copolymers with the linear and cyclic topologies, the solution with different polymer concentrations and solvent qualities, allows us to conclude that the ability to form a fibrillar gel with branched fibrils and regular subchain thickness is inherent for macromolecules with the solvophobic backbone and solvophilic pendants. The elements of the gel structure, such as the mesh size and fibrillar thickness, the number of cross-links, and their functionality, can be tuned and customized according to the requirements of their application. The results could be helpful for the directed design of the synthetic analogue of the relevant extracellular matrix, in tissue engineering, for fibrotic disease treatment and cell encapsulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01953 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!