A functional material integrated with a variety of functions is highly desired in wastewater treatment. In this research, a mussel-inspired method of immobilizing silver nanoparticles on the skeleton of a melamine sponge is proposed and applied for water remediation. Ag NPs were reduced in situ and grown on a polydopamine-modified melamine sponge. The catalytic reduction of 4-nitrophenol (4-NP) in the presence of the obtained MS-PDA-Ag was evaluated, and the results demonstrated that the MS-PDA-Ag presented high catalytic reduction activity. In addition, the monolithic MS-PDA-Ag presents excellent reusability with no remarkable decrease in catalytic efficiency after multiple reuses. Owing to the immobilized Ag NPs, the MS-PDA-Ag can also effectively inhibit the growth of bacteria against both gram-positive and gram-negative species, making it possible for bacteria elimination in polluted water. To further explore the possibility of utilizing the MS-PDA-Ag for versatile applications, a superhydrophobic derivative (S-MS-PDA-Ag) was prepared by coating a low-surface-energy substance (octadecanethiol) on the surface of MS-PDA-Ag. The obtained S-MS-PDA-Ag presents the capacities of oil/organics adsorption and water repellence, which can separate the insoluble oil/organics from water. The melamine sponge immobilized with Ag NPs demonstrates prominent catalytic reduction of 4-NP, antibacterial activity and the superhydrophobic derivative presents the capacity of insoluble oil/organics separation from oil-water mixtures, exhibiting high potential in the remediation of polluted water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c14544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!