Black Phosphorus Nanoparticles Promote Osteogenic Differentiation of EMSCs Through Upregulated TG2 Expression.

Nanoscale Res Lett

Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, People's Republic of China.

Published: October 2021

At bio-safe concentrations, black phosphorus nanoparticles activated TG2, and promote the expression of ECM, which further promoted osteogenic differentiation of EMSCs. From these results, we can conclude that black phosphorus nanoparticles are suitable as biological factors in bone tissue engineering. Black phosphorus nanoparticles (BPs) present excellent biocompatibility and good biodegradability, which have been rigorously studied and proven. However, its utilization in bone tissue engineering fields is still in its infancy. Thus, the main purpose of the present study was to investigate the effects of BPs on osteogenic differentiation of ectodermal mesenchymal stem cell (EMSC) in vitro. Biocompatible BPs with high yield were prepared with a simple and efficient ultrasonication technique. EMSCs were isolated from adult rat nasal respiratory mucosa. Then, we treated EMSCs with BPs at different concentrations in vitro and examined the effect of BPs on osteogenic differentiation of EMSCs. In addition, inhibitor of transglutaminase 2 (TG2) and western blot were used to clarify the mechanism of the promoting effect of BPs on osteogenesis. Our results indicated that BPs could significantly enhance osteogenic differentiation of EMSCs in vitro. Nevertheless, BPs had no effect on EMSCs proliferation. Mechanistically, BPs promoted osteogenesis differentiation of EMSCs through upregulating TG2 expression. These results highlight the advantage of using chemical materials for novel engineering strategies of these highly promising small molecules for bone-tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511187PMC
http://dx.doi.org/10.1186/s11671-021-03610-2DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
20
differentiation emscs
20
black phosphorus
16
phosphorus nanoparticles
16
bps
9
emscs
8
tg2 expression
8
bone tissue
8
tissue engineering
8
bps osteogenic
8

Similar Publications

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!