The role of platinum basis set (PTBS) and relativistic effects for predicting the vibrational frequencies and intramolecular force constants for cisplatin are discussed. Nonrelativistic and relativistic computational protocols were built at B3LYP/PTBS/jorge-DZP/C-PCM and B3LYP-DKH2/PTBS/jorge-DZP-DKH/C-PCM levels, respectively, where 19 distinct PTBS were tested. As expected, the structural parameters were not very sensitive to the PTBS, however, the inclusion of relativistic effects improves the description of the cisplatin structure. When it comes to the vibrational frequencies, the results show that the PTBS, and mainly the relativistic effects, are both important. Moreover, the PBE0 functional led to better results than B3LYP in the protocols PBE0/LANL2TZ(f)/jorge-DZP/C-PCM (P20) and PBE0-DKH2/Sapporo-DKH3-DZP-2012/jorge-DZP-DKH/C-PCM (P22), which provided a mean absolute deviation (MAD) of only 10.8 cm and 9.5 cm, respectively, for vibrational frequencies, which are excellent choices to study Pt complexes. Finally, a discussion of the intramolecular force constants for cisplatin is carried out, with the calculated bond and angles force constants with P20 and P22 protocols being recommended for the parameterization of the force field of cisplatin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-021-04937-4 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Calculating anharmonic vibrational modes of molecules for interpreting experimental spectra is one of the most interesting challenges of contemporary computational chemistry. However, the traditional QM methods are costly for this application. Machine learning techniques have emerged as a powerful tool for substituting the traditional QM methods.
View Article and Find Full Text PDFSci Rep
January 2025
School of Railway Engineering, Hunan Technical College of Railway High-Speed, Hengyang, 421002, China.
Research on the evolutionary behavior of the particle breakage processes in coarse-grained soil under the action of train load is of practical significance for subgrade construction and maintenance. However, existing studies have not addressed the prediction of particle size distribution evolution. In this paper, the MTS loading system is used to simulate the dynamic train load effect on coarse-grained soil fillers.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Mountain Bridge and Tunnel Engineering, College of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!