Diffusion Tensor MRI Structural Connectivity and PET Amyloid Burden in Preclinical Autosomal Dominant Alzheimer Disease: The DIAN Cohort.

Radiology

From the Department of Radiology, The MetroHealth System, 2500 MetroHealth Dr, Cleveland, OH 44109 (J.W.P.); Departments of Radiology (J.W.P., J.R.P.) and Psychiatry (P.M.D.), Duke University Medical Center, Durham, NC; Ruđer Bošković Institute, Zagreb, Croatia (D.G.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (T.B.).

Published: January 2022

Background Pathologic evidence of Alzheimer disease (AD) is detectable years before onset of clinical symptoms. Imaging-based identification of structural changes of the brain in people at genetic risk for early-onset AD may provide insights into how genes influence the pathologic cascade that leads to dementia. Purpose To assess structural connectivity differences in cortical networks between cognitively normal autosomal dominant Alzheimer disease (ADAD) mutation carriers versus noncarriers and to determine the cross-sectional relationship of structural connectivity and cortical amyloid burden with estimated years to symptom onset (EYO) of dementia in carriers. Materials and Methods In this exploratory analysis of a prospective trial, all participants enrolled in the Dominantly Inherited Alzheimer Network between January 2009 and July 2014 who had normal cognition at baseline, T1-weighted MRI scans, and diffusion tensor imaging (DTI) were analyzed. Amyloid PET imaging using Pittsburgh compound B was also analyzed for mutation carriers. Areas of the cerebral cortex were parcellated into three cortical networks: the default mode network, frontoparietal control network, and ventral attention network. The structural connectivity of the three networks was calculated from DTI. General linear models were used to examine differences in structural connectivity between mutation carriers and noncarriers and the relationship between structural connectivity, amyloid burden, and EYO in mutation carriers. Correlation network analysis was performed to identify clusters of related clinical and imaging markers. Results There were 30 mutation carriers (mean age ± standard deviation, 34 years ± 10; 17 women) and 38 noncarriers (mean age, 37 years ± 10; 20 women). There was lower structural connectivity in the frontoparietal control network in mutation carriers compared with noncarriers (estimated effect of mutation-positive status, -0.0266; = .04). Among mutation carriers, there was a correlation between EYO and white matter structural connectivity in the frontoparietal control network (estimated effect of EYO, -0.0015, = .01). There was no significant relationship between cortical global amyloid burden and EYO among mutation carriers ( > .05). Conclusion White matter structural connectivity was lower in autosomal dominant Alzheimer disease mutation carriers compared with noncarriers and correlated with estimated years to symptom onset. Clinical trial registration no. NCT00869817 © RSNA, 2021 See also the editorial by McEvoy in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127824PMC
http://dx.doi.org/10.1148/radiol.2021210383DOI Listing

Publication Analysis

Top Keywords

structural connectivity
36
mutation carriers
36
amyloid burden
16
alzheimer disease
16
autosomal dominant
12
dominant alzheimer
12
frontoparietal control
12
control network
12
structural
10
carriers
10

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Purpose: Meaningful connections, encompassing relationships providing emotional support, understanding, acceptance, and a sense of belonging, are vital for social inclusion and well-being of Individuals with serious mental illness (SMI). The mixed methods review critically explored multifaceted approaches supporting people with SMI to foster meaningful (non-intimate) social relationships or connections.

Methods: Searches of eight electronic databases returned 4882 records.

View Article and Find Full Text PDF

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Easily Water-Synthesisable Iron-Chloranilate Frameworks as High Energy and High-Power Cathodes for Sustainable Alkali-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.

Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.

View Article and Find Full Text PDF

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!