A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT. | LitMetric

Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT.

Radiology

From the Department of Radiology and Research Institute of Radiology (J.C., H.J.H., J.B.S., S.M.L., K.J., R.P., J.K., N.K.), Department of Convergence Medicine, Biomedical Engineering Research Center (J. Yun), and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-735, Korea; Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea (J.J.); Department of Internal Medicine, Ajou University School of Medicine, Suwon, Korea (Y.L.); Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (H.J.); and Coreline Soft, Seoul, Korea (J. Yi, D.Y., B.K.).

Published: January 2022

Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 See also the editorial by Wielpütz in this issue.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2021204164DOI Listing

Publication Analysis

Top Keywords

deep learning
16
diagnostic accuracy
16
content-based image
12
image retrieval
12
interstitial lung
12
lung disease
12
applying cbir
12
interreader agreement
12
cbir
11
proposed content-based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!