In order to obtain a deep insight into the NO formation mechanism in a fluidized bed, density functional theory was used to investigate the interaction between char(N) and NO at a molecular level. Three key influencing factors for the formation of NO, namely, active sites, nitrogen status, and oxygen molecules, were taken into study. The geometric structures, electron distribution characteristics, and reaction paths were optimized and calculated. The outer orbital electron properties of char(N) and NO indicate that NO acts as an oxidizer, which tends to abstract electrons from char(N) during the char(N)-NO interaction. A stable NO molecule has a singlet state and presents as a linear molecular structure. The chemisorption on the char surface will weaken the bond energy of NO from 620 to 94.1 kJ/mole, which promotes the catalytic reduction of NO. Active sites on the char surface benefit the reduction of NO to N, rather than NO, which indicates that excessive high temperatures will inhibit the production of NO. The combination of pyridine nitrogen and NO to form NO needs to overcome a much higher energy barrier of 357.4 kJ/mole. The initial chemisorption of oxygen molecules on the char surface will promote the formation of NO by lowering the dissociation energy of NO from the char surface as well as exposing nitrogen to the char surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c06125DOI Listing

Publication Analysis

Top Keywords

char surface
20
active sites
12
interaction charn
8
sites nitrogen
8
nitrogen status
8
oxygen molecules
8
surface will
8
char
5
surface
5
quantum chemical
4

Similar Publications

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks for Transparent and Fire-Proof Ceramizable Coatings.

Nanomicro Lett

January 2025

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.

In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.

View Article and Find Full Text PDF

SO Removal from Flue Gas by Char-Supported Fe-Zn-Cu Sorbent.

Materials (Basel)

January 2025

Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China.

In this study, the mechanisms of SO adsorption on lignite char and char-supported Fe-Zn-Cu sorbent (FZC sorbent) were investigated. The FZC sorbent was prepared by the impregnation of metal components on raw coal followed by steam gasification. Flue gas desulfurization experiments were carried out on a fixed-bed reactor at 100-300 °C by using simulated flue gas containing SO/O/HO balanced by N.

View Article and Find Full Text PDF

Insight into nitrogen transformation during the binary NaOH-NaCO molten salt thermal treatment of waste tires.

Waste Manag

January 2025

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Molten salt thermal treatment of solid waste is a promising way for energy recovery and pollutant removal. However, the migration of nitrogen during pyrolysis of waste tires poses a challenge for cleaner production. This study investigated nitrogen conversion pathways during waste tires pyrolysis using a binary NaOH-NaCO salt at 425, 500, and 575 °C.

View Article and Find Full Text PDF

-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!