A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Divergence-Free Wigner Transform of the Boltzmann Operator Based on an Effective Frequency Theory. | LitMetric

A Divergence-Free Wigner Transform of the Boltzmann Operator Based on an Effective Frequency Theory.

J Phys Chem A

Department of Chemistry and Molecular Biology, University of Gothenburg, SE 405 30 Gothenburg, Sweden.

Published: October 2021

The centroid effective frequency representation of path integrals as developed by Feynman and Kleinert was originally aimed at calculating partition functions and related quantities in the canonical ensemble. In its path integral formulation, only paths were relevant. This formulation has been used by the present authors in order to calculate the many-body Wigner function of the Boltzmann operator, which includes also open paths. This usage of the theory outside of the original intention can lead to mathematical divergence issues for potentials with barriers, particularly at low temperature. In the present paper, we modify the effective frequency theory of Feynman and Kleinert by also including open paths in its variational equations. In this way, a divergence-free approximation to the Boltzmann operator matrix elements is derived. This generalized version of Feynman and Kleinert's formulation is thus more robust and can be applied to all types of barriers at all temperatures. This new version is used to calculate the Wigner functions of the Boltzmann operator for a quartic oscillator and for a double well potential and both static and dynamic properties are studied at several temperatures. The new theory is found to be essentially as precise as the original one. Its advantage is that it will always deliver a well-defined, even if approximate, Wigner function, which can, for instance, be used for sampling initial conditions for molecular dynamics simulations. As will be discussed, the theory can be systematically improved by including higher-order Fourier modes into the nonquadratic part of the trial action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543443PMC
http://dx.doi.org/10.1021/acs.jpca.1c05860DOI Listing

Publication Analysis

Top Keywords

boltzmann operator
16
effective frequency
12
frequency theory
8
feynman kleinert
8
wigner function
8
open paths
8
theory
5
divergence-free wigner
4
wigner transform
4
boltzmann
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!