FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of Fzr1 shows impaired quiescence and self-renewal ability of HSC in two Fzr1 heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in Fzr1 HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41375-021-01445-5 | DOI Listing |
Hematopoietic aging is characterized by chronic inflammation associated with myeloid bias, HSC accumulation, and functional HSC impairment. Yet it remains unclear how inflammation promotes these aging phenotypes. NFkappaB both responds to and directs inflammation, and we present an experimental model of elevated NFkappaB activity (IkappaBminus) to dissect its role in hematopoietic aging phenotypes.
View Article and Find Full Text PDF3 Biotech
February 2025
Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai, 602105 India.
The hematopoietic stem cell (HSC) continues their functional integrity and return to quiescence quickly even after inflammatory and other proliferative stress. The mechanism which is responsible for this highly regulatory process is not understood clearly. Previous results have shown that CD53 is noticeably upregulated in HSCs in response to a variety of stimuli.
View Article and Find Full Text PDFCurr Opin Immunol
January 2025
Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan; Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Energy metabolism of immune cells, such as glycolysis and mitochondrial activity, requires strict regulation. This is especially critical in the complex environment of the bone marrow (BM), where there is a need to both preserve the quiescence of hematopoietic stem cells (HSCs) and guarantee timed and effective lineage differentiation of the HSCs. Recent advances highlight the critical roles played by bioactive metabolites in regulating hematopoiesis.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Cell Systems and Anatomy, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, United States of America.
Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs.
View Article and Find Full Text PDFIndian J Hematol Blood Transfus
October 2024
Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
Over recent decades, UCB has been widely used as an excellent alternative source of HSCs for treating many hematologic disorders. Recent studies suggest using mesenchymal stroma cell co-cultures to increase the number of HSCs prior to transplantation. Considering the critical role of mitochondria in the cell's fate and the importance of the self-renewal capacity of HSCs in HSCT, we decided to investigate the mass/DNA copy number of mitochondria in HSCs while co-cultured with MSCs and alone after seven days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!