Solution blow spinning (SBS) has recently emerged as a novel method that can produce nano- and microfiber structures suitable for tissue engineering. Gelatin is an excellent precursor for SBS as it is derived mainly from collagens that are abundant in natural extracellular matrices. Here we report, for the first time the successful generation of 3D thermally crosslinked preforms by using SBS from porcine gelatin. These SBS mats were shown to have three-dimensional fibrous porous structure similar to that of mammalian tissue extracellular matrix. In pharma industry, there is an urgent need for adequate 3D liver tissue models that could be used in high throughput setting for drug screening and to assess drug induced liver injury. We used SBS mats as culturing substrates for human hepatocytes to create an array of 3D human liver tissue equivalents in 96-well format. The SBS mats were highly cytocompatible, facilitated the induction of hepatocyte specific CYP gene expression in response to common medications, and supported the maintenance of hepatocyte differentiation and polarization status in long term cultures for more than 3 weeks. Together, our results show that SBS-generated gelatin scaffolds are a simple and efficient platform for use in vitro for drug testing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505433 | PMC |
http://dx.doi.org/10.1038/s41598-021-99659-1 | DOI Listing |
Int J Biol Macromol
December 2024
São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, SP, Brazil.
Ultrathin fibers have been used to design functional nanostructured materials for technological and biomedical applications. Combining the use of renewable and compatible sources with the emerging alternative SBS (solution blow spinning) technique opens new opportunities for material applications. In this review, we introduce the benefits of SBS over the classical electrospinning technique by following studies that use collagen or gelatin.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2025
Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Institute of Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada. Electronic address:
Wound healing poses significant clinical challenges due to issues like bacterial infections, oxidative stress, and the need for sustained therapeutic delivery. This study aimed to develop and characterize biocompatible nonwoven fibrous mats composed of poly(vinyl alcohol) (PVA) and zein encapsulating α-tocopherol for wound dressing applications. α-Tocopherol was nano-encapsulated in zein proteins using an antisolvent co-precipitation method, followed by its dispersion in PVA solutions.
View Article and Find Full Text PDFFood Chem
November 2024
Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil. Electronic address:
The shelf life of perishable foods is estimated through expensive and imprecise analyses that do not account for improper storage. Smart packaging, obtained by agile manufacturing of nanofibers functionalized with natural pigments from agri-food residues, presents promising potential for real-time food quality monitoring. This study employed the solution blow spinning (SBS) technique for the rapid production of smart nanofiber mats based on polycaprolactone (PCL), incorporating extracts of agricultural residues rich in anthocyanins from eggplant (EE) or purple cabbage (CE) for monitoring food quality.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil.
Wounds are considered one of the most critical medical conditions that must be managed appropriately due to the psychological and physical stress they cause for patients, as well as creating a substantial financial burden on patients and global healthcare systems. Nowadays, there is a growing interest in developing nanofiber mats loaded with varying plant extracts to meet the urgent need for advanced wound ressings. This study investigated the development and characterization of poly(lactic acid) (PLA)/ poly(ethylene glycol) (PEG) nanofiber membranes incorporated with Ora-pro-nóbis (OPN; 12.
View Article and Find Full Text PDFPolymers (Basel)
January 2024
Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.
Apart from structure and composition, morphology plays a significant role in influencing the performance of materials in terms of both bulk and surface behavior. In this work, polylactic acid (PLA) constituted by submicrometric fibers is prepared. Using a modified electrospinning (ES) device to carry out solution blow spinning (SBS), the fibrillar morphology is modified, with the aim to induce variations in the properties of the material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!