The popularized application of annual ryegrass-maize rotation (ARMR) in southern China has been proposed to fully utilize the farmlands and to increase forage yield and quality. Herein, one growth cycle of ARMR was conducted and soil bacteria were analyzed by 16S rRNA sequencing for control (CK), after the preceding crop (monoculture, or mixed sowing of annual ryegrass and oat) and the successive crop (maize). Our results indicated that the α-diversity of soil bacteria was changed in the ARMR system, which was related to the activity of urease and available phosphatase. The mixed sowing of annual ryegrass and oat in preceding crop could improve the yield and quality, while it was accompanied by unbalanced soil community. With the increased sowing proportion of oat to annual ryegrass, the soil pH increased while the soil available phosphatase decreased. The ARMR system was found to benefit the soil microenvironment by increasing the beneficial soil bacteria and enzyme activity or decreasing the harmful soil bacteria. Considering the soil bacteria α-diversity index and physicochemical properties comprehensively, the recommended sowing regime is the mixed sowing of M2 (22.5 kg·hm annual ryegrass with 75 kg·hm oat).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505654PMC
http://dx.doi.org/10.1038/s41598-021-99550-zDOI Listing

Publication Analysis

Top Keywords

soil bacteria
20
annual ryegrass
16
armr system
12
mixed sowing
12
soil
9
physicochemical properties
8
annual ryegrass-maize
8
ryegrass-maize rotation
8
rotation armr
8
southern china
8

Similar Publications

Towards repeated clear-cutting of boreal forests - a tipping point for biodiversity?

Biol Rev Camb Philos Soc

January 2025

Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway.

Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity.

View Article and Find Full Text PDF

A reduction-secretion system contributes to roxarsone (V) degradation and efflux in Brevundimonas sp. M20.

BMC Microbiol

January 2025

School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250117, China.

Roxarsone (V) (Rox(V)) is an organoarsenical compound that poses significant risks to aquatic ecosystems and various diseases. Reducing trivalent 3-amino-4-hydroxyphenylarsonic acid (HAPA(III)) offers a competitive advantage; however, it leads to localized arsenic contamination, which can disrupt the soil microbiome and impede plant growth. Three genes, BsntrA, arsC2, and BsexpA, encoding nitroreductase, arsenate reductase, and MFS transporter, respectively, were identified in the Rox(V)-resistant strain Brevundimonas sp.

View Article and Find Full Text PDF

Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.

Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!