Enormous enhancement of superconducting pairing temperature (T) to 65 K in FeSe/SrTiO has made it a spotlight. Despite the effort of interfacial engineering, FeSe interfaced with TiO remains the unique case in hosting high T, hindering a decisive understanding on the general mechanism and ways to further improving T. Here we constructed a new high-T interface, single-layer FeSe interfaced with FeO-terminated LaFeO. Large superconducting gap and diamagnetic response evidence that the superconducting pairing can emerge near 80 K, highest amongst all-known interfacial superconductors. Combining various techniques, we reveal interfacial charge transfer and strong interfacial electron-phonon coupling (EPC) in FeSe/LaFeO, showing that the cooperative pairing mechanism works beyond FeSe-TiO. Intriguingly, the stronger interfacial EPC than that in FeSe/SrTiO is likely induced by the stronger interfacial bonding in FeSe/LaFeO, and can explain the higher T according to recent theoretical calculations, pointing out a workable route in designing new interfaces to achieve higher T.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505662 | PMC |
http://dx.doi.org/10.1038/s41467-021-26201-2 | DOI Listing |
J Phys Condens Matter
January 2025
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.
The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.
Nat Commun
January 2025
Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.
Nat Commun
January 2025
Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Unconventional superconductivity is known for its intertwining with other correlated states, making exploration of the intertwined orders important for understanding its pairing mechanism. In particular, spin and nematic orders are widely observed in iron-based superconductors; however, the presence of charge order is uncommon. Using scanning tunnelling microscopy, and through expanding the phase diagram of iron-arsenide superconductor BaKFeAs to the hole-doping regime beyond KFeAs by surface doping, we demonstrate the formation of a charge density wave (CDW) on the arsenide surface of heavily hole-doped BaKFeAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!