is one of the major causes of food-borne infections. We investigated the serotype distribution and antimicrobial resistance of isolates collected in Korea between January 2016 and December 2017. In total, 669 isolates were collected from clinical specimens at 19 university hospitals. Serotyping was performed according to the Kauffmann-White scheme, and antimicrobial susceptibility was tested using Sensititre EUVSEC plates or disk diffusion. Among the strains, C (39.8%) and B (36.6%) were the most prevalent serogroups. In total, 51 serotypes were identified, and common serotypes were . enterica serovar I 4,[5],12:i:- (16.7%), . Enteritidis (16.1%), . Bareilly (14.6%), . Typhimurium (9.9%), and . Infantis (6.9%). The resistance rates to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole were 32.6%, 12.1%, and 8.4%, respectively. The resistance rates to cefotaxime and ciprofloxacin were 8.1% and 3.0%, respectively, while 5.4% were multidrug-resistant. serovar I 4,[5],12:i:- and . Enteritidis were highly prevalent, and there was an increase in rare serotypes. Multidrug resistance and ciprofloxacin resistance were highly prevalent. Periodic investigations of serotypes and antimicrobial resistance are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548255 | PMC |
http://dx.doi.org/10.3343/alm.2022.42.2.268 | DOI Listing |
Water Res
January 2025
Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:
Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology and Hygiene, Mymensingh, Bangladesh.
Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand.
Background: In China, brucellosis has resurfaced recently with a discernible spatial distribution, particularly affecting dairy herds and small ruminant populations. However, limited dissemination of knowledge, attitudes, and practices (KAP) for brucellosis control exists among farmers and animal health staff. This study aimed to assess the KAP of brucellosis control and prevention in animal health staff and farmers, with the goal of educating the public regarding the application of efficient brucellosis control and prevention strategies.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania.
View Article and Find Full Text PDFPLoS One
January 2025
Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!