Low-frequency and rare coding variants of NUS1 contribute to susceptibility and phenotype of Parkinson's disease.

Neurobiol Aging

Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. Electronic address:

Published: February 2022

NUS1 has been recently identified as a candidate gene for Parkinson's disease (PD). Few studies have examined the association of NUS1 variants with PD susceptibility and phenotypes. In the first cohort, whole-exome sequencing was performed to identify variants in NUS1 exon-coding and exon-intron regions in 1542 cases and 1625 controls. 13 variants were totally detected, of which 10 rare variants and 3 low-frequency variants. Burden analysis showed that rare NUS1 variants significantly enriched in PD (p=0.016). We also performed a meta-analysis based on previous and our studies to correlate NUS1 mutations with PD susceptibility. Integrating our previous cohort (3210 cases and 2807 controls) and the first cohort identified the significant association of rs539668656 with PD risk (odds ratio (OR) = 2.82, p = 0.016). The genotype-phenotype association analysis showed that patients carrying rare variants, or rs539668656 were significantly associated with earlier onset age, depression, emotional impairment and severe disease condition. Our results support the role of NUS1 rare variants and rs539668656 towards PD susceptibility and phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2021.09.003DOI Listing

Publication Analysis

Top Keywords

rare variants
12
variants
9
variants nus1
8
susceptibility phenotype
8
parkinson's disease
8
nus1 variants
8
variants rs539668656
8
nus1
7
low-frequency rare
4
rare coding
4

Similar Publications

BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.

View Article and Find Full Text PDF

Bovine spastic syndrome (SS) is a progressive, adult-onset neuromuscular disorder (NMD). SS is inherited but the mode of inheritance is unclear. The aim of this study was to characterize the phenotype and to identify a possible genetic cause of SS by whole-genome sequencing (WGS) and focusing on protein-changing variants.

View Article and Find Full Text PDF

Loss-of-function SLC25A20 mutation causes carnitine-acylcarnitine translocase deficiency by reducing SLC25A20 protein stability.

Gene

December 2024

Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.

View Article and Find Full Text PDF

Whole genome and transcriptome analysis of pancreatic acinar cell carcinoma elucidates mechanisms of homologous recombination deficiency and unravels novel relevant fusion events.

Pathol Res Pract

December 2024

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065,  USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA. Electronic address:

Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic tumor with a heterogeneous clinical course and, except for radical surgery, limited treatment options. We present a comprehensive study encompassing whole-genome and RNA sequencing of 7 tumor samples from 3 metastatic PACC patients to further delineate its genomic landscape and potential therapeutic implications. Our findings reveal distinct signatures of homologous recombination deficiency (HRD) in patients harboring pathogenic germline BRCA1/2 and FANCL mutations, demonstrating favorable responses to poly (ADP-ribose) polymerase 1 (PARP) inhibitors with prolonged disease-free intervals.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!