A facile ultrasensitive detection of MC-LR toxin via a real-time assembled aptasensor of plasmonic graphene oxide.

Talanta

Institute of Solid State Physics, HeFei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China. Electronic address:

Published: January 2022

Real time controllable assembling/aptasensing approach via plasmonic graphene oxide (GO) nanocomposites has been firstly proven to simultaneously give tuning of micro-nano structure of plasmonic GO and ultrasensitive detection of MC-LR toxin. In order to fabricate the assembly, a high-quality hollow triangular nanoplate AgClAu:p-GO (HTNP AgClAu:p-GO) can act as a template; furthermore, we combine DNA-hybridization with biotin-strepavidin binding protocol for tuning the HTNP AgClAu:p-GO assemblies from networks to laminar structure, and simultaneously loading Raman reporters into the assemblies. The dynamic assembling process can be utilized as a real time SERS aptasensor for detecting MC-LR due to ratiometric introduction of MC-LR toxin inhibiting formation of plasmonic p-GO assembly via toxin/aptamer bioconjugation and causing reverse alteration of SERS signal for giving ultrasensitive SERS detection of MC-LR. A detection limit of 6.3pM with a wide linear range from 10pM to 5 nM can be achieved. When the aptasensor has been applied in real samples, the real time assembling/aptasensing approach shows recoveries from 98% to 103% with relative standard deviation (RSD) lower than 3%, expecting that one-step nanofabrication and sensing strategy can be extended to in-field test of environmental contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.122864DOI Listing

Publication Analysis

Top Keywords

detection mc-lr
12
mc-lr toxin
12
real time
12
ultrasensitive detection
8
plasmonic graphene
8
graphene oxide
8
assembling/aptasensing approach
8
htnp agclaup-go
8
mc-lr
5
facile ultrasensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!