Ultra-sensitive detection of 2,4,6-trinitrotoluene (TNT) plays an important role in society security and human health. The Raman probe molecule p-aminothiophenol (PATP) can interact with TNT in three ways to form a TNT-PATP complex. In this paper, a 'sandwich' structure was developed to detect TNT with high sensitivity. Au nano-pillar arrays (AuNPAs) substrates modified by low-concentration PATP through Au-S bonds were acted as capture probe for TNT. Meanwhile, Ag nano-particles (AgNPs) modified by PATP at higher concentration were employed as tags for surface-enhanced Raman scattering (SERS). The formation of the TNT-PATP complex is not only the means by which AuNPAs substrates recognize and capture TNT, but also links the SERS tags to TNT, forming an AuNPAs-TNT-AgNPs 'sandwich' structure. The Raman signal of PATP was greatly enhanced mainly because novel 'hot spots' formed between the AuNPAs and AgNPs of the 'sandwich' structure. The Raman signal of PATP was further amplified by the chemical enhancement effect induced by the TNT-PATP complex formation. Based on this mechanism, the limit of detection (LOD) of TNT was determined from the Raman signal of PATP. The LOD reached 10 mg/mL (4.4 × 10 M), much lower than that suggested by the US Environmental Protection Agency (88 nM). Moreover, TNT was selectively detected over several TNT analogues 2,4-dinitrotoluene (DNT), p-nitrotoluene (NT) and hexogen (RDX). Finally, the 'sandwich' structure was successfully applied to TNT detection in environmental water and sand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.122824DOI Listing

Publication Analysis

Top Keywords

'sandwich' structure
20
tnt-patp complex
12
raman signal
12
signal patp
12
tnt
11
surface-enhanced raman
8
raman scattering
8
aunpas substrates
8
structure raman
8
raman
6

Similar Publications

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures.

Materials (Basel)

January 2025

Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.

In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.

View Article and Find Full Text PDF

A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research.

View Article and Find Full Text PDF

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!