Abiotic stressors, such as drought and high salinity, seriously affect plant growth, productivity, and quality. Maintaining reactive oxygen species (ROS) homeostasis and osmotic balance plays a crucial role in abiotic stress tolerance. β-amylase (BAM) hydrolyzes α-1,4-glycosidic bonds by releasing maltose from starch in the regulation of soluble sugars. However, the function and mechanism of BAMs related to abiotic stress resistance remain unclear in sweetpotato (Ipomoea batatas (L.) Lam.). In this study, we isolated a novel β-amylase gene IbBAM1.1, which was strongly induced by PEG6000, NaCl, and maltose treatments in sweetpotato variety Yanshu25. Overexpression of IbBAM1.1 conferred enhanced tolerance to the drought and high salinity stressors in Arabidopsis thaliana. The activity of β-amylase and the degradation of starch were promoted under drought or salt stress. Accordingly, the contents of osmoprotectants, including maltose and proline were significantly higher in the transgenic lines than those in wild type (WT) plants. Less ROS, such as HO and O, accumulated in the overexpressing lines than in WT plants. Superoxide dismutase activity was strongly enhanced and the level of malondialdehyde was lower under the drought or salt treatment in transgenic plants. Taken together, these results demonstrate that IbBAM1.1 acted as a positive regulator, at least in part, by regulating the level of osmoprotectants to balance the osmotic pressure and activate the scavenging system to maintain ROS homeostasis in the plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.09.034 | DOI Listing |
Front Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea. Electronic address:
Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.
β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube () fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!