Grafting MSI-78A onto chitosan microspheres enhances its antimicrobial activity.

Acta Biomater

i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, Porto 4200-135, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal. Electronic address:

Published: January 2022

MSI-78A (Pexiganan A) is one of the few antimicrobial peptides (AMPs) able to kill Helicobacter pylori, a pathogenic bacterium that colonizes the gastric mucosa of half of the world's population. Antibiotics fail in 20-40% of H. pylori-infected patients, reinforcing the need for alternative treatments. Herein, a bioengineered approach was developed. MSI-78A with a C-terminal cysteine was grafted onto chitosan microspheres (AMP-ChMic) by thiol-maleimide (Michael-addition) chemistry using a long heterobifunctional spacer (NHS-PEG-MAL). Microspheres with ∼4 µm diameter (near H. pylori length) and stable at low pH were produced by spray drying using a chitosan solution with an incomplete genipin crosslinking. A 3 × 10 µg AMP/microsphere grafting was estimated/confirmed by UV/Vis and FTIR spectroscopies. AMP-ChMic were bactericidal against H. pylori J99 (highly pathogenic human strain) at lower concentrations than the free peptide (∼277 µg grafted MSI-78A-SH/mL vs 512 µg free MSI-78A-SH/mL), even after pre-incubation in simulated gastric conditions with pepsin. AMP-ChMic killed H. pylori by membrane destabilization and cytoplasm release in a ratio of ∼10 bacteria/microsphere. This can be attributed to H. pylori attraction to chitosan, facilitating the interaction of grafted AMP with bacterium membrane. Overall, it was demonstrated that the peptide-microsphere conjugation chemistry did not compromise the MSI-78A antimicrobial activity, instead it boosted its bactericidal performance against H. pylori. STATEMENT OF SIGNIFICANCE: Half of the world's population is infected with Helicobacter pylori, a gastric bacterium that is responsible for 90% of non-cardia gastric cancers. Therefore, H. pylori eradication is now advocated in all infected individuals. However, available antibiotic therapies fail in up to 40% patients. Antimicrobial peptides (AMPs) are appealing alternatives to antibiotics, but their high susceptibility in vivo limits their clinical translation. AMP immobilization onto biomaterials surface will overcome this problem. Herein, we demonstrate that immobilization of MSI-78A (one of the few AMPs with activity against H. pylori) onto chitosan microspheres (AMP-ChMic) enhances its anti-H. pylori activity even at acidic pH (gastric settings). These results highlight the strong potential of AMP-ChMic as an antibiotic alternative for H. pylori eradication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.09.063DOI Listing

Publication Analysis

Top Keywords

chitosan microspheres
12
pylori
11
antimicrobial activity
8
antimicrobial peptides
8
peptides amps
8
helicobacter pylori
8
half world's
8
world's population
8
microspheres amp-chmic
8
pylori eradication
8

Similar Publications

On-demand release of insulin using glucose-responsive chitosan-based three-compartment microspheres.

Int J Biol Macromol

December 2024

Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Article Synopsis
  • Researchers have developed glucose-responsive insulin release systems, using chitosan-based three-compartment microspheres (TCMs) to achieve prolonged insulin delivery.
  • The TCMs release insulin based on blood glucose levels, as glucose generates gluconic acid, which degrades chitosan and triggers insulin release from compartments with varying concentrations.
  • In tests, TCMs showed longer-lasting insulin release and effective blood glucose regulation in diabetic cell models, demonstrating promising potential for diabetes treatment and insulin research.
View Article and Find Full Text PDF

Biomaterials with antimicrobial and muco-adhesive properties represent an efficient system for different applications. In this paper, a new biomaterial based on chitosan-camphor beads and their crosslinked form with glutaraldehyde was optimized. Low and high molecular weight chitosan were considered.

View Article and Find Full Text PDF

In modern times, achieving precise drug delivery through a safe and stable carrier remains a significant challenge. In this study, we synthesized a novel ligand based on a guanazole Schiff base and subsequently developed new metal-organic framework (MOF) named UWO-1 through a reaction involving zinc acetate. At the same time, curcumin (CUR) was loaded onto the newly synthesized UWO-1.

View Article and Find Full Text PDF

Introduction: Chitosan is a biocompatible, mucoadhesive, and biodegradable polymer widely used for various purposes due to its biological activity and safety. The current study aimed to formulate Chitosan microspheres and conduct an in-vitro evaluation of their cytotoxicity. The concept is focused on targeted gut delivery and biological activities in gut microbiota remodelling.

View Article and Find Full Text PDF

Chitosan/polyvinyl alcohol-based magnetic hydrogel microspheres with controlled retention and regulated drug release for intravesical instillation.

Int J Biol Macromol

December 2024

State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

As a clinically effective treatment for bladder cancer (BC), intravesical instillation still suffers from the debilitating efficacy triggered by frequent urination. Herein, the magnetic hydrogel microspheres (DOX-mMSs) with the incorporation of magnetic nanoparticles (MNPs) and doxorubicin (DOX) into polyvinyl alcohol (PVA)/chitosan (CS) are developed for intravesical instillation. The magnetic force initiated by the applied magnetic field (AMF) enables the long-term retention of DOX-mMSs in the bladder, and the convenient injection and excretion from the bladder can be accomplished in virtue of the micron size of the DOX-mMSs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!