The ubiquity and potency of antibiotics may give the false impression that infection is a solved problem. Unfortunately, even bacterial infections, the target of antibiotics, remain a major cause of illness and death. Several major unmet needs persist: biofilms, such as those on implanted hardware, largely resist antibiotics; the inflammatory host response to infection often produces more damage than the infection itself; and systemic antibiotics often decimate the gut microbiome, which can predispose to additional infections and even predispose to non-infectious diseases. Additionally, there is an increasing threat from multi-drug resistant microorganisms, though market forces may continue to inhibit innovation in this realm. These numerous unmet infection-related needs provide attractive goals for innovation of targeted drug delivery technologies, especially those of nanomedicine. Here we review several of those innovations in pre-clinical development, the two such therapies which have made it to clinical use, and the opportunities for further technology development for treating infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665093 | PMC |
http://dx.doi.org/10.1016/j.addr.2021.113996 | DOI Listing |
Int J Biol Macromol
January 2025
Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education & Research, Shirpur-425405, Maharashtra, India.
The main issues with current and traditional cancer therapy delivery systems include a lack of selectivity towards tumors, causing harm to healthy cells, low efficiency in loading drugs, and the inability to visually track the drug's localization after administration. These limitations negatively impact the effectiveness of therapy and result in increased treatment costs. Furthermore, conventional cancer therapies typically target tumor cells through a single mechanism, which eventually leads to the emergence of drug resistance.
View Article and Find Full Text PDFNanomedicine
December 2024
School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China. Electronic address:
Photothermal therapy is a novel and promising method for cancer treatment due to its controllable property, noninvasive nature, and high selectivity. Nevertheless, tumor recurrence of inflammatory response and tumor tolerance of heat shock protein over-expression remain serious challenges in current photothermal therapy. Additionally, the high dosage requirement of nanomaterial for optimal imaging and therapeutic effect would result in various side effects, organ excretion burdens, and long-term accumulation in the body.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!