Silver nanoparticles have drawn considerable attention as excellent antimicrobial agents because of their characteristics, including broad antimicrobial spectrum, durable antimicrobial property, and large specific surface area. However, the toxicity of silver nanoparticles limits the in vivo application in the antimicrobial therapy field. Here, we developed a novel silver-based biomaterial to achieve favorable biocompatibility as well as enhanced antimicrobial activity. Silver microspheres (AgMPs) were synthesized using bovine serum albumin as a template and HO as an activator. Electron microscopy results showed that AgMPs had a honeycombed inner structure with an approximate diameter of 800 nm. The minimum inhibitory concentration results exhibited that AgMPs had effective antimicrobial action against bacteria and fungi when the concentration was greater than 32 and 16 μg/mL, respectively. The cell proliferation results suggested that AgMPs have no influence on corneal epithelial cell growth when the concentration was under 25 μg/mL. The in vivo antifungal therapy experiments demonstrated that 25 μg/mL AgMPs could effectively combat wound infections. Overall, AgMPs exhibited substantial antimicrobial action on fungi in addition to biosafety on corneal epithelial cells at a concentration within 16-25 μg/mL. Our study shows that AgMPs can be used as an ocular surface drop candidate to treat fungal keratitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.1c00815 | DOI Listing |
Biosci Microbiota Food Health
August 2024
Department of Food Science, Széchenyi István University, Mosonmagyaróvár, 9200, Hungary.
The global probiotics market has been continuously growing, driven by consumer demand for immune-enhancing functional foods, dietary supplements, and natural therapeutics for gastrointestinal and gut function-mediated diseases. Probiotic microorganisms represent a diverse group of strains with complex but generalized mechanistic patterns. This review describes the various immunomodulatory mechanisms by which probiotics exert their effects, including the competitive exclusion of pathogenic microbes, production of antimicrobial substances, modulation of the immune system, and improvement of gut barrier function.
View Article and Find Full Text PDFPyrazinamide (PZA) is a critical component of tuberculosis first-line therapy due to its ability to kill both growing and non-replicating drug-tolerant populations of within the host. Recent evidence indicates that PZA acts through disruption of coenzyme A synthesis under conditions that promote cellular stress. In contrast to its bactericidal action , PZA shows weak bacteriostatic activity against in axenic culture.
View Article and Find Full Text PDFJ Korean Med Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
Background: The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1.
View Article and Find Full Text PDFSci Rep
January 2025
College of Resource and Civil Engineering, Northeast University, Shenyang, China.
This study presents the fabrication and characterization of mixed matrix membranes (MMMs) incorporating green-synthesized silver nanoparticles (AgNPs) using Hibiscus Rosa sinensis extract within a polyethersulfone (PES) matrix for nanofiltration (NF) application. The membranes were evaluated for their pure water permeability, salt rejection, dye removal, and antifouling performance. Results showed that the membrane with 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!