Recently, adaptive filtering algorithms were designed using hyperbolic functions, such as hyperbolic cosine and tangent function. However, most of those algorithms have few parameters that need to be set, and the adaptive estimation accuracy and convergence performance can be improved further. More importantly, the hyperbolic sine function has not been discussed. In this paper, a family of adaptive filtering algorithms is proposed using hyperbolic sine function (HSF) and inverse hyperbolic sine function (IHSF) function. Specifically, development of a robust adaptive filtering algorithm based on HSF, and extend the HSF algorithm to another novel adaptive filtering algorithm based on IHSF; then continue to analyze the computational complexity for HSF and IHSF; finally, validation of the analyses and superiority of the proposed algorithm via simulations. The HSF and IHSF algorithms can attain superior steady-state performance and stronger robustness in impulsive interference than several existing algorithms for different system identification scenarios, under Gaussian noise and impulsive interference, demonstrate the superior performance achieved by HSF and IHSF over existing adaptive filtering algorithms with different hyperbolic functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504740 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258155 | PLOS |
Environ Technol
January 2025
College of Architecture & Civil Engineering, Beijing University of Technology, Beijing, People's Republic of China.
The release of algal organic matter (AOM) during seasonal algal blooms increases the complexity and heterogeneity of natural organic matter (NOM) in water sources, altering its hydrophilic-hydrophobic balance and posing significant challenges to conventional water treatment processes. This study aims to verify whether the (Granular activated carbon) GAC selected for the adsorption of NOM in sand filtration effluent can adapt to water quality fluctuations caused by AOM release, and identify the criteria influencing GAC adsorption performance. Results indicated that external surface area, mesopore volume, pore size and surface functional groups were key indicators of GAC adsorption performance.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China.
Heart disease is a significant global health issue. Traditional methods for heart rate monitoring typically require close physical contact, which limits the continuity and convenience of monitoring. To achieve real-time, non-contact heartbeat monitoring, researchers have introduced millimeter-wave radar technology.
View Article and Find Full Text PDFSci Rep
January 2025
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China.
The terahertz (THz) security scanner offers advantages such as non-contact inspection and the ability to detect various types of dangerous goods, playing an important role in preventing terrorist attacks. We aim to accurately and quickly detect concealed objects in THz security images. However, current object detection algorithms face many challenges when applied to THz images.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control.
View Article and Find Full Text PDFBioelectron Med
January 2025
SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.
The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!