A palladium-catalyzed asymmetric hydroesterification of α-aryl acrylic acids with CO and alcohol was developed, preparing a variety of chiral α-substituted succinates in moderate yields with high values. The kinetic profile of the reaction progress revealed that the alkene substrate first underwent the hydroesterification followed by esterification with alcohol. The origin of the enantioselectivity was elucidated by density functional theory computation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.1c03361 | DOI Listing |
J Org Chem
December 2024
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
A palladium-catalyzed asymmetric chlorocyclization of 1,6-enynes has been described. Controlling the chloride ion concentration in the system by substrate design is the key to achieving asymmetric chlorinated cyclization. In the presence of Pd(PhCN)Cl and chiral phosphoramidite ligands, the reaction accesses diverse chiral ()-α-chloromethylene-γ-butyrolactams with excellent selectivity and enantioselectivity.
View Article and Find Full Text PDFOrg Lett
December 2024
Institut für Chemie, Universität Oldenburg, D-26129 Oldenburg, Germany.
Optically active spirocycles were prepared in a sequence of two palladium-catalyzed reactions. In the first step, racemic α-(-iodophenyl)-β-oxo allyl esters were submitted to the palladium-catalyzed decarboxylative asymmetric allylic alkylation reaction, furnishing the α-allylated products with a quaternary stereocenter with good yields and enantioselectivities. Subsequently, these intermediate products were converted in a Heck reaction yielding the spirocyclic structures as a mixture of - and -cyclic regioisomers.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China.
Even though tuning electronic effect of chiral ligands has proven to be a promising method for designing efficient catalysts, the potential to achieve highly selective reactions by this strategy remains largely unexplored. Here, we report a palladium-catalyzed enantioselective ring-closing aminoalkylative amination of aminoenynes enabled by rationally tuning the remote electronic property of 1,1'-binaphthol-derived phosphoramidites. With a tailored 6,6'-CN-substituted 1,1'-binaphthol-derived phosphoramidite as a ligand, a broad range of aromatic amines are compatible with this reaction, allowing the efficient synthesis of a series of enantioenriched exocyclic allenylamines bearing saturated N-heterocycles with up to >99% enantiomeric excess.
View Article and Find Full Text PDFJACS Au
November 2024
Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
(-)-Pleurotin () and (+)-dihydropleurotinic acid () are benzoquinone meroterpenoids isolated from fungal sources with powerful antitumor and antibiotic activities. Concise asymmetric total syntheses of the stereochemically pure (+)-dihydropleurotinic acid () and (-)-pleurotin () from the chiral pool ()-Roche ester-derived vinyl bromide have been achieved in 12 and 13 longest linear steps, respectively. The key transformations feature a Michael addition/alkylation cascade reaction to forge three contiguous stereocenters matched with the natural products, a PtO-catalyzed stereoselective reduction of olefin to generate the correct stereocenter at C3, a palladium-catalyzed Negishi cross-coupling between triflate and zinc reagent to introduce the redox-sensitive para-quinone moiety, and a hydroboration/copper-catalyzed carboxylation sequence to incorporate the vital carboxyl group.
View Article and Find Full Text PDFAdv Carbohydr Chem Biochem
November 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
The various methods for the de novo asymmetric synthesis of the pyranose sugars are surveyed in this update of the 2013 Advances in Carbohydrate Chemistry and Biochemistry review. The survey begins with a general overview of the various de novo approaches to carbohydrates and defines the use of asymmetric catalysis for the de novo asymmetric synthesis of pyranoses. Next the application to pyranose-containing oligosaccharides is introduced via the use of a palladium-mediated glycosylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!