Promyelocytic leukemia protein (PML) is a tumor suppressor possessing multiple modes of action, including induction of apoptosis. We unexpectedly find that PML promotes necroptosis in addition to apoptosis, with Pml macrophages being more resistant to TNF-mediated necroptosis than wild-type counterparts and PML-deficient mice displaying resistance to TNF-induced systemic inflammatory response syndrome. Reduced necroptosis in PML-deficient cells is associated with attenuated receptor-interacting protein kinase 1 (RIPK1) activation, as revealed by reduced RIPK1[S166] phosphorylation, and attenuated RIPK1-RIPK3-MLKL necrosome complex formation. We show that PML deficiency leads to enhanced TNF-induced MAPK-activated kinase 2 (MK2) activation and elevated RIPK1[S321] phosphorylation, which suppresses necrosome formation. MK2 inhibitor treatment or MK2 knockout abrogates resistance to cell death induction in PML-null cells and mice. PML binds MK2 and p38 MAPK, thereby inhibiting p38-MK2 interaction and MK2 activation. Moreover, PML participates in autocrine production of TNF induced by cellular inhibitors of apoptosis 1 (cIAP1)/cIAP2 degradation, since PML-knockout attenuates autocrine TNF. Thus, by targeting MK2 activation and autocrine TNF, PML promotes necroptosis and apoptosis, representing a novel tumor-suppressive activity for PML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647022 | PMC |
http://dx.doi.org/10.15252/embr.202052254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!