Ophthalmology Going Greener: A Narrative Review.

Ophthalmol Ther

Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.

Published: December 2021

The combined effects of fossil fuel combustion, mass agricultural production and deforestation, industrialisation and the evolution of modern transport systems have resulted in high levels of carbon emissions and accumulation of greenhouse gases, causing profound climate change and ozone layer depletion. The consequential depletion of Earth's natural ecosystems and biodiversity is not only a devastating loss but a threat to human health. Sustainability-the ability to continue activities indefinitely-underpins the principal solutions to these problems. Globally, the healthcare sector is a major contributor to carbon emissions, with waste production and transport systems being amongst the highest contributing factors. The aim of this review is to explore modalities by which the healthcare sector, particularly ophthalmology, can reduce carbon emissions, related costs and overall environmental impact, whilst maintaining a high standard of patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502635PMC
http://dx.doi.org/10.1007/s40123-021-00404-8DOI Listing

Publication Analysis

Top Keywords

carbon emissions
12
transport systems
8
healthcare sector
8
ophthalmology going
4
going greener
4
greener narrative
4
narrative review
4
review combined
4
combined effects
4
effects fossil
4

Similar Publications

Implementing recycling in the operating room: a single-center experience.

Surg Endosc

January 2025

Department of Medicine, Surgery and Healthcare Sciences, University of Trieste, Strada Di Fiume 447, 34149, Trieste, Italy.

Background: Climate change poses significant challenges to global health, exacerbated by healthcare systems' carbon footprint and waste generation. Surgical activities contribute to these impacts, necessitating sustainable practices to mitigate environmental harm. This study aims to assess the feasibility and effectiveness of a recycling program in reducing waste, carbon emissions, and disposal costs in the operating rooms (ORs).

View Article and Find Full Text PDF

Evaluating export vulnerability through import demand elasticity in carbon border adjustment contexts: a focus on Türkiye.

Environ Sci Pollut Res Int

January 2025

Department of International Trade and Business, Faculty of Economics and Administrative Sciences, Inonu University, 44000, Malatya, Turkey.

Import demand elasticity (IDE) is a critical metric often employed to guide government decisions regarding tariffs and non-tariff barriers, ensuring that foreign trade remains uninterrupted while optimizing tax revenues. This study, however, leverages IDE to assess the impact of the carbon border adjustment mechanism (CBAM) on Türkiye's decarbonization process. Specifically, the research analyzed the total export quantities and unit prices of four product groups-cement, fertilizers, and inorganic chemicals, steel and iron, and aluminum-exported from Türkiye to the European Union-27 countries under the CBAM framework between 2002 and 2021.

View Article and Find Full Text PDF

The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.

View Article and Find Full Text PDF

In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.

View Article and Find Full Text PDF

The significant role of vegetation activity in regulating wetland methane emission in China.

Environ Res

January 2025

Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of 15 Sciences, Daxing'anling 165200, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 10049, China. Electronic address:

Accurate quantifying of methane (CH) emissions is a critical aspect of current research on regional carbon budgets. However, due to limitations in observational data, research methodologies, and an incomplete understanding of process mechanisms, significant uncertainties persist in the assessment of wetland CH fluxes in China. In this study, we developed a machine learning model by integrating measured CH fluxes with related environmental data to produce a high-resolution (1 km) dataset of CH fluxes from China's wetlands for the period 2000-2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!