We report herein new luminescent rhenium(I) perfluorobiphenyl complexes that reacted specifically with the cysteine residue of the π-clamp sequence (FCPF) to afford novel peptide-based imaging reagents, photosensitisers for singlet oxygen and enzyme sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc04740jDOI Listing

Publication Analysis

Top Keywords

luminescent rheniumi
8
rheniumi perfluorobiphenyl
8
perfluorobiphenyl complexes
8
complexes site-specific
4
site-specific labels
4
labels peptides
4
peptides afford
4
afford photofunctional
4
photofunctional bioconjugates
4
bioconjugates report
4

Similar Publications

Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.

View Article and Find Full Text PDF

Chiral rhenium(I) emitters exhibiting circularly polarized phosphorescence (CPP) are an attractive mainstay for CP organic light-emitting diodes (CP-OLEDs). However, the efficiency of such emitters is not ideal, and they have never been explored for circularly polarized electroluminescence (CPEL) applications. Here, we have tailored robust chiral Re(I) complexes with improved CPP properties, and demonstrated CPEL from rhenium emitters for the first time.

View Article and Find Full Text PDF

The design of enantiomerically pure circularly polarized luminescent (CPL) emitters would enormously benefit from the accurate and in-depth interpretation of the chiroptical properties by means of jointly (chiroptical) photophysical measurements and state-of-the-art theoretical investigation. Herein, computed and experimental (chiro-)optical properties of a series of eight enantiopure phosphorescent rhenium(I) tricarbonyl complexes are systematically compared in terms of electronic circular dichroism (ECD) and CPL. The compounds have general formula -[ReX(CO)(N^C)], where N^C is a pyridyl benzannulated N-heterocyclic carbene deriving from a (substituted) 2-(pyridin-2-yl)imidazo[1,5-]pyridin-2-ium proligand and X = Cl, Br and I, and display structured red phosphorescence with long-lived ( = 7.

View Article and Find Full Text PDF

The photophysical and chiroptical properties of a novel, chiral helicene-NHC-Re(I) complex bearing an N-(aza[6]helicenyl)-benzimidazolylidene ligand are described, showing its ability to emit yellow circularly polarized luminescence. A comparative analysis of this new system with other helicene-Re(I) complexes reported to date illustrates the impact of structural modifications on the emissive and absorptive properties.

View Article and Find Full Text PDF

A rare -generated mononuclear rhenium complex [Re(bpt)(CO)(NH)] (1, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazolate) can be used as a "turn-on" luminescent probe for selectively sensing L-histidine against other amino acids. Compound 1 was prepared by reacting Re(CO), 2-cyanopyridine and hydrazine with an formed bpt ligand through cyclization C-N and N-N couplings with its single-side chelating mode arrayed with respect to the Re center. Compound 1 was highly stable and showed a green light MLCT emission in DMF solution at 507 nm upon excitation at 360 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!