Stable insertion of genetic cargo into insect genomes using transposable elements is a powerful tool for functional genomic studies and developing genetic pest management strategies. The most used transposable element in insect transformation is piggyBac, and piggyBac-based germline transformation has been successfully conducted in model insects. However, it is still challenging to employ this technology in non-model insects that include agricultural pests. This paper reports on germline transformation of a global agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda, using the hyperactive piggyBac transposase (hyPBase). In this work, the hyPBase mRNA was produced and used in place of helper plasmid in embryo microinjections. This change led to the successful generation of transgenic FAW. Furthermore, the methods of screening transgenic animals, PCR-based rapid detection of transgene insertion, and thermal asymmetric interlaced PCR (TAIL-PCR)-based determination of the integration site, are also described. Thus, this paper presents a protocol to produce transgenic FAW, which will facilitate piggyBac-based transgenesis in FAW and other lepidopteran insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62714 | DOI Listing |
Front Plant Sci
December 2024
State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China.
Double-stranded RNA (dsRNA) has emerged as key player in gene silencing for the past two decades. Tailor-made dsRNA is now recognized a versatile raw material, suitable for a wide range of applications in biopesticide formulations, including insect control to pesticide resistance management. The mechanism of RNA interference (RNAi) acts at the messenger RNA (mRNA) level, utilizing a sequence-dependent approach that makes it unique in term of effectiveness and specificity compared to conventional agrochemicals.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
GATA2 deficiency is an autosomal dominant germline disorder of immune dysfunction and bone marrow failure with a high propensity for leukemic transformation. While sequencing studies have identified several secondary mutations thought to contribute to malignancy, the mechanisms of disease progression have been difficult to identify due to a lack of disease-specific experimental models. Here, we describe a murine model of one of the most common GATA2 mutations associated with leukemic progression in GATA2 deficiency, Gata2.
View Article and Find Full Text PDFSci Transl Med
January 2025
Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
Familial platelet disorder (FPD) is associated with germline mutations, establishing a preleukemic state and increasing the risk of developing leukemia. Currently, there are no intervention strategies to prevent leukemia progression. Single-cell RNA sequencing ( = 10) combined with functional analysis of samples from patients with -FPD ( > 75) revealed that FPD hematopoietic stem and progenitor cells (HSPCs) displayed increased myeloid differentiation and suppressed megakaryopoiesis because of increased activation of prosurvival and inflammatory pathways.
View Article and Find Full Text PDFFly (Austin)
December 2025
Department of Biology, Indian Institute of Science Education & Research, Pune, India.
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In , PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2024
The University of Chicago, Department of Radiology, Chicago, Illinois, United States.
Purpose: The BRCA1-associated protein 1 () gene is of great interest because somatic () mutations are the most common alteration associated with pleural mesothelioma (PM). Further, germline mutation of the gene has been linked to the development of PM. This study aimed to explore the potential of radiomics on computed tomography scans to identify somatic gene mutations and assess the feasibility of radiomics in future research in identifying germline mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!