Aligned wave-like elastomer fibers with robust conductive layers electroless deposition for stretchable electrode applications.

J Mater Chem B

College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.

Published: November 2021

Flexible wearable electronics play an important role in the healthcare industry due to their unique skin affinity, portability and breathability. Despite great progress, it still remains a big challenge to facilely fabricate stretchable electrodes with low resistance, excellent stability and a wide tensile range. Here, we propose a handy and time-saving strategy for the fabrication of elastomeric films consisting of wave-like fibers with a robust conductive layer of silver nanoparticles (AgNPs) immobilized using polydopamine (PDA) and silicone rubber (SR). To realize better stretchability, electrospun thermoplastic polyurethane (TPU) mats with oriented nanofibers were treated ethanol to achieve a wavy structure, which also allowed for the decoration of AgNP precursors on the TPU surface PDA assisted electroless deposition (ELD). Therefore, the electrodes achieved a stretchability of 120% with high electrical conductivity (486 S cm). The films with a reduction time of 30 min showed superior electrical conductivity indicated by a resistance increase of only 100% within 50% strain. The TPU/PDA/AgNP/SR composites with a shorter reduction time of silver precursors could monitor human motions as wearable strain sensors with a wide work strain range (0-98%) and a high sensitivity (with a gauge factor (GF) of up to 81.76) for a strain of 80-98%. Therefore, they are an excellent candidate for potential application in prospective stretchable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb01441bDOI Listing

Publication Analysis

Top Keywords

fibers robust
8
robust conductive
8
electroless deposition
8
electrical conductivity
8
reduction time
8
aligned wave-like
4
wave-like elastomer
4
elastomer fibers
4
conductive layers
4
layers electroless
4

Similar Publications

Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing.

Nanomaterials (Basel)

January 2025

School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.

This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.

View Article and Find Full Text PDF

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease.

Commun Biol

January 2025

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.

Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.

View Article and Find Full Text PDF

This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics.

View Article and Find Full Text PDF

Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!